Ultrasonic imaging parameters ~Attenuation coefficient

> Advisor: Pai-Chi Li Student: Mei-Ru Yang Wei-Ning Lee

|                         | Device | Circuit | Method | Apparatus | System | Process | Total |
|-------------------------|--------|---------|--------|-----------|--------|---------|-------|
| Attenuation coefficient | 1      | 0       | 31     | 17        | 0      | 1       | 50    |

| Ultrasound attenuation in bones                        | ******* |      |
|--------------------------------------------------------|---------|------|
| (two transducers)                                      | ****    |      |
| Ultrasound attenuation in bones                        | ***     |      |
| (one transducers)                                      |         |      |
| Ultrasound attenuation in other tissues(breast dermis) |         | **** |
| Attenuation predicted by Biot's theo                   | ****    |      |
| Ultrasound attenuation in signal proc                  | *****   |      |



#### Methods and Apparatus

- One transducer (pulse-echo mode)
  - Spectral Shift
  - Log Spectral Difference
  - Backscattering
- Two transducers(one transmitter and one receiver)

#### **One Transducer**

- Simplify the handling and avoid potential errors to misalignment or mismatching
- Differentiate the attenuation coefficients of adjacent tissues
- Problem : renewed reflection
  - The delay should preferably by adapted to space any mirror images of pronounced spikes away from the region to be analysis





 $A(x) = A(x_o) \cdot e^{-\alpha x}$  A: amplitude x: distance  $\alpha: \text{ attenuation}$   $\alpha = \frac{\ln A(x_1) - \ln A(x_2)}{x_1 - x_2}$  $\alpha(f) = \beta \cdot f^n$ 

#### Interpose a delay line (50mm)



#### **Two Transducers**

- Through-transmission method
- A pair of transducers coaxially in a water tank
- Submerge a sample between the transducers
- Signals were recorded both with and without the specimen in the acoustic path
- Can't separate the contribution caused by effects in the soft tissue from the contributions caused by effects in the bone tissue

### Apparatus



Water tank

t1, t2: pulse-echo mode

### Spectral Shift Technique

- $P_r$ : transmitting pulse power spectrum
- $P_t$ : receiving pulse power spectrum
- T: time constant

$$P_{t}(f) = c_{i}e^{-[2\pi T(f-f_{t})]^{2}}, \quad f > 0$$
$$|H(f)|^{2} = e^{-4\pi\beta fd}, \quad f > 0$$
$$P_{r}(f) = |H(f)|^{2}P_{i}(f) = c_{0}e^{-[2\pi T(f-f_{r})]^{2}}$$

$$f_r = f_t - \frac{\rho a}{2\pi T^2} \Longrightarrow \beta = \frac{2\pi T (f_t - f_r)}{d}$$

# Log Spectral Difference Technique

$$P_s(f) = T^4 e^{-2L\alpha(f)} P_w(f)$$

 $P_s(f)$ : power spectra recorded with the specimen sample  $P_w(f)$ : power spectra recorded without the specimen sample L: the specimen thickness  $\alpha(f)$ : the frequency - dependent attenuation T: the amplitude transmission coefficient at each specimen/water interface **if transmiss ion losses are negligible** 

$$\Rightarrow \alpha(f) = \frac{1}{2L} [\ln P_w(f) - \ln P_s(f)]$$

- Attenuation obeys  $\alpha = \beta f^n$
- Use amplitude and phase information of the pulse
- Ultrasound reflection at the water-specimen interface → produce error

$$\alpha(f) = \frac{1}{L}\ln(1-R^2) + \frac{1}{L}\ln\left[\frac{A_w(f)}{A_s(f)}\right]$$

- $A_w(f)$ : amplitude spectrum with water path only
- A<sub>s</sub>(f) : amplitude spectrum with the specimen inserted L : specimen thickness

$$P(f) = \alpha(f) - \alpha(f_0) = \frac{1}{L} \ln \left[ \frac{A_w(f) A_s(f_0)}{A_s(f) A_w(f_0)} \right]$$

$$Q(f) = \frac{1}{V_p(f_0)} - \frac{1}{V_p(f)} = \frac{\phi_w(f_0) - \phi_s(f_0)}{2\pi f_0 L} - \frac{\phi_w(f) - \phi_s(f)}{2\pi f L}$$

$$P^{*}(f) = \beta(f^{n} - f_{0}^{n}) \qquad \qquad Q^{*}(f) = -\frac{\beta}{2\pi} \tan(\frac{n\pi}{2})(f^{n-1} - f_{0}^{n-1})$$

Minimize 
$$TSE = k \frac{\sum_{i=1}^{m} [p(f_i) - p^*(f_i)]^2}{\sum_{i=1}^{m} [p(f_i)]^2} + (1-k) \frac{\sum_{i=1}^{m} [Q(f_i) - Q^*(f_i)]^2}{\sum_{i=1}^{m} [Q(f_i)]^2}$$

Given "n", calculate attenuation coefficient

#### **Diffraction Correction**

- Diffraction effect on attenuation estimate due to the two media with different ultrasound velocities
- Experimental Diffraction Correction technique

- Using the spectrum of the reference media, i.e. water

$$\hat{\beta} = \frac{-20[\log_{10} A_e(f,z) - \log A_r(f,z)]}{|f|d}$$

$$\beta = \frac{-20[\log_{10} A_e(f,z) - \log_{10} A_r(f,z) - \log_{10} A_d(f,z)]}{|f|d}$$

Ad(f, z) : diffraction magnitude transfer function

• Fresnel parameter :  $S=Sa=z a^{2}/a^{2}$ 

$$S_w^* = z_w^* \lambda_w / a^2 = S_a \qquad \longrightarrow \qquad z_w^* = \frac{\lambda_w (z_a - d) + \lambda_s d}{\lambda_w}$$

 $z_w^*$  ensures that the water-specimen-water and water- only paths undergo equivalent diffraction effects

Then, 
$$\beta_{EDC} = \frac{-20 \left[ \log_{10} A_e(f, z) - \log_{10} A_r(f, z_w^*) \right]}{|f| d}$$

 $\lambda_s$ : wavelength in water

 $\lambda_{w}$ : wavelength in specimen

### Difficulties

- Theoretical value
  - Biot's theory (for bone)
  - Ultrasound properties of mammalian tissues
  - Numerous parameters are required for the computation (bulk modulus, shear modulus, transmission coefficient, etc.)
- Three phantoms
  - Actual attenuation coefficients are unknown

### Strategies for Attenuation Estimate

- Qualitative analysis
  - Use various specimens with largely different hardness
  - Observe the attenuation trend
  - Relationship between attenuation and frequency
- Quantitative analysis
  - Dispersion & reflection
  - Diffraction correction

# Experiment

• Transducers: 3.5 MHz

5 MHz 7.5 MHz

- Pulse receiver
- Oscilloscope
- A/D: GaGe fs=100 MHz
- LabView
- Phantom



# **Preliminary Results**

- Transmitting mode
  - Signal type: Gaussian
  - 4 cycles, continuous
  - PRI: 300 µ s
  - Output voltage: ± 5 V
- Receiving mode
  - Capture length: 5  $\mu$  s
  - No. of PRI: 1
  - Sampling rate: 50 MHz





#### References

- Paper1 : "Attenuation coefficient and speed of sound in immature and mature rat cartilage: a study in the 30-70 MHz frequency range," IEEE Ultra. Sym., 1999.
- Paper 2: "Prediction of ultrasound attenuation in cancellous bones using poroelasticity and scattering theories," IEEE Ultra. Sym., 2001.
- Paper 3: "Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory,"J. Acous. Soc. Am. ,Vol. 91, pp. 1106-1111, 1992.
- Paper 4: "Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment," J. Acous. Soc. Am. Vol.106, pp. 3659-3664, 1999
- Paper 5: "Anisotropy of attenuation and backscatter in cancellous bone" IEEE Ultra. Sym., pp. 1325-1328, 1999.

- Paper6: Ping He, "Acoustic parameter estimation based on attenuation and dispersion measurements," Proc. IEEE/EMBS, Oct. 29, Nov. 1, 1998
- Paper7: Wei Xu, Jonathan J. Kaufman, "Diffraction correction methods for insertion ultrasound attenuation estimation," IEEE Trans. On Biomedical Engineering, vol. 40, No. 6, June 1993
- Paper8: Roman Kuc, "Estimating acoustic attenuation from reflected ultrasound signals: comparison of spectral-shift and spectral-difference approaches," IEEE Trans. On Acoustics, Speech, and Signal Processing, vol. ASSP-32, No. 1, Feb. 1984
- Paper9: Leeman, Ferrari, Jones, and Fink, "Perspectives on attenuation estimation from pulse-echo signals," IEEE Trans. On Sonics and Ultrasonics, Vol. SU-31, No. 4, July 1984
- Paper10: Parker, Lerner, and Waag, "Comparison of techniques for in vivo attenuation measurements," IEEE Trans. On Biomedical Engineering, vol. 36, No. 12, Dec 1988