Chapter 6: AC Circuits

Chapter 6: Outline

AC Steady State response $=$ Forced Response

$$
\begin{aligned}
& \downarrow \\
& k_{3} \cos \omega t+k_{4} \sin \omega t \leftrightarrow K_{3} \cos \omega t+K_{4} \sin \omega t \\
& X_{m} \cos (\omega t+\phi) \leftrightarrow X_{m}^{\prime} \cos \left(\omega t+\phi^{\prime}\right)
\end{aligned}
$$

Phasor representation

$$
\underline{X}=X_{m} \angle \phi \leftrightarrow \underline{X^{\prime}}=X_{m}^{\prime} \angle \phi^{\prime}
$$

With Phasor Notations, circuit equations become algebraic.
Thus, all resistive circuit analysis methods are applicable.

$$
\begin{aligned}
& i=C \frac{d v}{d t} \rightarrow \underline{I}=j \omega C \underline{V} \\
& \text { Resistance } \rightarrow \text { Impedance } \\
& \text { Conductance } \rightarrow \text { Admittance }
\end{aligned}
$$

Complex, frequency dependence

Phasors and the AC Steady State

AC Circuits

- A stable, linear circuit operating in the steady state with sinusoidal excitation (i.e., sinusoidal steady state).
- Complete response $=$ forced response + natural response.
- In the steady state, natural response $\rightarrow 0$.

TABLE 5.3 Selected Trial Solutions for Forced Response

$\boldsymbol{f}(\boldsymbol{t})$	$y_{F}(\boldsymbol{t})$
k_{0} (a constant)	K_{0} (a constant)
$k_{1} t$	$K_{1} t+K_{0}$
$k_{2} e^{a t}$	$K_{2} e^{a t}$
$k_{3} \cos \omega t+k_{4} \sin \omega t$	$K_{3} \cos \omega t+K_{4} \sin \omega t$
$A_{1} \cos \left(\omega t+\theta_{1}\right)$	$A_{2} \cos \left(\omega t+\boldsymbol{\theta}_{2}\right)$

Same frequency, different amplitudes and phases

Sinusoids

(a) Cosine wave

(b) Sine wave

- Three parameters are needed to determine a sinusoid.
- $x(t)=X_{m} \cos (\omega t+\phi)=\operatorname{Re}\left[X_{m} e^{j(\omega t+\phi)}\right]$.
- X_{m} : amplitude, $\omega=2 \pi f=2 \pi / \mathrm{T}$: angular frequency, ϕ : phase angle (radian).

Phasors

- The three parameters can be represented by a rotating phasor in a two-dimensional plane.
- At a given time (e.g., $t=0$), the nonrotating phasor is represented by $\underline{X}=X_{m} \angle \phi$.
- The frequency information is not included.

AC Forced Response

- The forced response of any branch variable (current or voltage) is at the same frequency as the excitation frequency ω for a linear circuit.
- In other words, any branch variable has the general form $y(t)=Y_{m} \cos \left(\omega t+\phi_{y}\right)$.
- Circuit analysis becomes manipulation of complex numbers.

Complex Numbers in the Complex Plane

 $j \equiv \sqrt{-1}$
(a) The complex plane with

$$
A=a_{r}+j a_{i}
$$

$a_{r}=|A| \cos \phi_{a}$
$a_{i}=|A| \sin \phi_{a}$

(b) Polar coordinates for $A=|A| \quad \phi_{a}$

$$
|A|=\left(a_{r}^{2}+a_{i}^{2}\right)^{1 / 2}
$$

$$
\phi_{a}=\tan ^{-1}\left(\frac{a_{i}}{a_{r}}\right) \quad a_{r}>0
$$

$$
\phi_{a}= \pm 180^{\circ}-\tan ^{-1}\left(\frac{a_{i}}{a}\right) \quad a_{r}<0
$$

Complex Addition and Subtraction

Complex Conjugate

$$
\begin{aligned}
& A=|A| \angle \phi_{a}=a_{r}+j \cdot a_{i} \\
& A^{*} \equiv|A| \angle-\phi_{a}=a_{r}-j \cdot a_{i} \\
& A \cdot A^{*}=a_{r}^{2}+a_{i}^{2}=|A|^{2}
\end{aligned}
$$

Complex Multiplication

$A \cdot B=\left(a_{r} b_{r}-a_{i} b_{i}\right)+j \cdot\left(a_{r} b_{i}-a_{i} b_{r}\right)=\operatorname{Re}[A B]+\operatorname{Im}[A B]$
if k is real, $\operatorname{Re}[k B]=k \operatorname{Re}[B], \operatorname{Im}[k B]=k \operatorname{Im}[B]$

Complex Division (Rationalization)

$$
\frac{B}{A}=\frac{B A^{*}}{A A^{*}}=\frac{b_{r} a_{r}+b_{i} a_{i}}{a_{r}^{2}+a_{i}^{2}}+j \frac{b_{r} a_{i}-b_{i} a_{r}}{a_{r}^{2}+a_{i}^{2}}
$$

Complex Number in Exponential Form

- Euler's formula: $e^{ \pm j \alpha}=\cos \alpha \pm j \sin \alpha$
- Complex number in exponential form: $A=\mid A e^{j \phi} a$

$$
\begin{aligned}
& A \cdot B=|A||B| \angle \phi_{a}+\phi_{b} \\
& \frac{A}{B}=\frac{|A|}{|B|} \angle \phi_{a}-\phi_{b} \\
& j=1 \angle 90^{\circ}
\end{aligned}
$$

Phasor Representation

- A sinusoid can be represented by a phasor:

$$
X \cos (\omega t+\phi)=\operatorname{Re}\left[X e^{j \omega t+\phi}\right]=\operatorname{Re}\left[X e^{j \phi} e^{j \omega t}\right]=\operatorname{Re}\left[\underline{X} e^{j \omega t}\right]
$$

- The sum of two sinusoids at the same frequency can be represented by another phasor. The new phasor is simply the sum of the two original phasors.

$$
\operatorname{Re}\left[\underline{X}_{1} e^{j \omega t}\right]+\operatorname{Re}\left[\underline{X}_{2} e^{j \omega t}\right]=\operatorname{Re}\left[\underline{X}_{1} e^{j \omega t}+\underline{X}_{2} e^{j \omega t}\right]=\operatorname{Re}\left[\left(\underline{X}_{1}+\underline{X}_{2}\right) e^{j \omega t}\right]
$$

Phasor Representation

- The steady-state response of any branch variable in a stable circuit with a sinusoidal excitation will be another sinusoid at the same frequency (forced response in Chapter 5)
- Kirchhoff's laws hold in phasor form (only additions are involved).

Phasor with Differentiation

$$
\frac{d \operatorname{Re}\left[X e^{j \omega t+\phi}\right]}{d t}=\operatorname{Re}\left[\frac{d X e^{j \omega t+\phi}}{d t}\right]=\operatorname{Re}\left[j \omega X e^{j \omega t+\phi}\right]
$$

$\underline{X} \xrightarrow{\text { differentitition }} j \omega \underline{X}$

Example 6.3: Parallel Network with an AC Voltage Source

(a) $R C$ circuit in the ac steady state

(b) Phasor diagram for the currents

$$
v(t)=30 \cos \left(4000 t+20^{\circ}\right) \Rightarrow \underline{V}=30 \angle 20^{\circ}
$$

$$
i_{R}=\frac{v}{5} \Rightarrow \underline{I}_{R}=\frac{V}{5}
$$

$$
\underline{I}=\underline{I}_{R}+\underline{I}_{C}=6.71 \angle 46.6(A)
$$

$$
i_{C}(t)=C \frac{d v_{c}(t)}{d t} \Rightarrow \underline{I}_{C}=C \cdot j \omega \underline{V} \quad i(t)=6.71 \cos \left(4000 t+46.6^{0}\right)(A)
$$

Example 6.4: Parallel Network with an

 AC Current Source
$i(t)=3 \cos 4000 t \Rightarrow \underline{I}=3 \quad \underline{I}=3=\underline{I}_{R}+\underline{I}_{C}=(0.2+j \cdot 0.1) \underline{V}$
$\underline{I}_{R}=\frac{V}{5}, \underline{I}_{C}=C \cdot j \omega \underline{V}$
$\underline{V}=\frac{3}{0.2+j \cdot 0.1}$
$v(t)=13.4 \cos \left(4000 t-26.6^{0}\right)(V)$

Impedance and Admittance

Phasor Representation

- Under ac steady-state, both the voltage and the current of a branch are sinusoids at the same frequency.

$$
\begin{aligned}
& v(t)=V_{m} \cos \left(\omega t+\phi_{v}\right)=\operatorname{Re}\left[\underline{V} e^{j \omega t}\right] \\
& i(t)=I_{m} \cos \left(\omega t+\phi_{i}\right)=\operatorname{Re}\left[\underline{I} e^{j \omega t}\right]
\end{aligned}
$$

Resistors

- Current and voltage are collinear (in phase).

$$
\begin{aligned}
& v=\operatorname{Re}\left[\underline{V}^{j \omega t}\right]=R \times \operatorname{Re}\left[\underline{I}^{j \omega t}\right]=\operatorname{Re}\left[R \underline{I} e^{j \omega t}\right] \\
& \underline{V}=R \underline{I}=V_{m} \angle \phi_{v}=R I_{m} \angle \phi_{i} \\
& V_{m}=R I_{m}, \phi_{v}=\phi_{i}
\end{aligned}
$$

Inductors

- Current lags voltage by 90 degrees.

$$
\begin{gathered}
v=L \frac{d i}{d t}=L \frac{d}{d t} \operatorname{Re}\left[\underline{I} e^{j \omega t}\right]=L \times \operatorname{Re}\left[\underline{I} \frac{d e^{j \omega t}}{d t}\right]=\operatorname{Re}\left[j \omega L \underline{I} e^{j \omega t}\right]=\operatorname{Re}\left[\underline{V} e^{j \omega t}\right] \\
\underline{V}=j \omega L \underline{I} \\
V_{m}=\omega L I_{m}, \phi_{v}=\phi_{i}+90^{\circ}
\end{gathered}
$$

Capacitors

- Current leads voltage by 90 degrees.

$$
\begin{gathered}
i=C \frac{d v}{d t}=C \frac{d}{d t} \operatorname{Re}\left[\underline{V} e^{j \omega t}\right]=C \times \operatorname{Re}\left[\underline{V} \frac{d e^{j \omega t}}{d t}\right]=\operatorname{Re}\left[j \omega C \underline{V} e^{j \omega t}\right]=\operatorname{Re}\left[\underline{I} e^{j \omega t}\right] \\
\underline{V}=\frac{1}{j \omega C} \underline{I}=-\frac{j}{\omega C} \underline{I} \\
V_{m}=\frac{I m}{\omega C}, \phi_{v}=\phi_{i}-90^{\mathrm{O}}
\end{gathered}
$$

Phasor Relations (Resistor)

(a) Resistor

Phasor Relations (Inductor)

(b) Inductor

Phasor Relation (Capacitor)

(c) Capacitor

Impedance

- In general, we can define a quantity Z and Ohm's law for ac circuits as $\underline{V}=Z \underline{I}$

$$
\begin{aligned}
& Z_{R}=R \\
& Z_{L}=j \omega L=\omega L \angle 90^{\circ} \\
& Z_{C}=1 / j \omega C=1 / \omega C \angle-90^{\circ}
\end{aligned}
$$

Time Domain vs. Frequency Domain

(a) Elements in the time domain

(b) Frequency-domain diagrams

Admittance

- Similarly, another quantity admittance Y can be defined.

$$
\begin{aligned}
& Y \equiv 1 / Z \\
& \underline{I}=Y \underline{V}
\end{aligned}
$$

Equivalent Impedance and Admittance

(a) Impedances in series

(b) Impedances in parallel
-Series equivalent impedance: $Z_{\text {ser }}=Z_{1}+Z_{2}+\cdots+Z_{N}$

$$
\left(\underline{V}=\underline{V}_{1}+\underline{V}_{2}+\cdots+\underline{V}_{N}\right)
$$

-Parallel equivalent impedance: $Y_{p a r}=Y_{1}+Y_{2}+\cdots+Y_{N}$

$$
\left(\underline{I}=\underline{I}_{1}+\underline{I}_{2}+\cdots+\underline{I}_{N}\right)
$$

Load Network

Impedance and Admittance

- Impedance and admittance are complex functions of frequency.

$$
\begin{array}{r}
Z=Z(j \omega)=\operatorname{Re}[Z]+j \operatorname{Im}[Z]=R(\omega)+j X(\omega) \\
\operatorname{Resistance}(\Omega) \text { Reactance }(\Omega)
\end{array}
$$

- Inductors and capacitors are reactive elements, inductive reactance is positive and capacitive reactance is negative.

Impedance and Admittance

$$
Y=Y(j \omega)=\operatorname{Re}[Y]+j \operatorname{Im}[Y]=G(\omega)+j B(\omega)
$$

 (Siemens) (Siemens)

- Inductors and capacitors are reactive elements, inductive reactance is positive and capacitive reactance is negative.

Impedance Triangle

Example 6.6: Impedance Analysis of a Parallel RC Circuit.

(a) Frequency-domain circuit diagram

(b) Impedance triangle

$$
\begin{aligned}
& Z=5 \|-j 10=4.47 \Omega \angle-26.6^{0} \\
& Y=\frac{1}{5}+\frac{1}{-j 10}=0.2+j 0.15=0.224 S \angle 26.6^{0} \\
& \underline{I}=\frac{V}{Z}=\underline{V} Y=6.71 \mathrm{~A} \angle 46.6^{0}
\end{aligned}
$$

Example 6.7: Frequency Dependence of a Parallel RC Network.

$$
\begin{aligned}
& Z(j \omega)=\frac{Z_{R} Z_{C}}{Z_{R}+Z_{C}}=\frac{R-j \omega C R^{2}}{1+(\omega C R)^{2}} \\
& R(\omega)=\operatorname{Re}[Z]=\frac{R}{1+(\omega C R)^{2}} \\
& X(\omega)=\operatorname{Im}[Z]=-\frac{\omega C R^{2}}{1+(\omega C R)^{2}}
\end{aligned}
$$

Example 6.8: AC Ladder Calculations

- AC ladder networks can be analyzed by series-parallel reduction (by replacing resistance with impedance).

Example 6.8: (Cont.)

$$
\begin{aligned}
& \underline{V}=Z \underline{I}=48+j 64=80 \mathrm{~V} \angle 53.1^{0} \\
& \underline{V}_{L}=\frac{j 10}{(4-j 2)+j 10} \underline{V}=89.4 \mathrm{~V} \angle 79.7^{0} \\
& \underline{V}_{C}=\frac{4-j 2}{(4-j 2)+j 10} \underline{V}=40 \mathrm{~V} \angle-36.9^{0}
\end{aligned}
$$

(b) Voltage waveforms

AC Circuit Analysis

AC Circuit Analysis

- Sources at the same frequency:
- Phasor transform method: the time domain sinusoids are transformed to the frequency domain and represented by phasors.

Time domain \rightarrow Frequency domain

AC Circuit Analysis

- Sources at the same frequency:
- With the transformation, all resistive circuit analysis techniques are applicable. Resistance is replaced by impedance and conductance is replaced by admittance.

> Proportionality
> Thévenin-Norton
> Node Analysis
> Mesh Analysis

AC Circuit Analysis

- Sources at the same frequency:
- After analysis, the resultant phasors are converted back to the time-domain sinusoids.

Frequency domain \rightarrow Time domain

AC Circuit Analysis

- Sources at different frequencies:
- Due to the linearity, the proportionality method is still applicable.
- The phasor analysis is performed at each individual frequency

Example 6.9: AC Network with a Controlled Source

(a) AC network with a controlled source

$$
\begin{aligned}
& \text { Let } \underline{I}_{2}=1 \angle 0^{0}(=1+j 0) \\
& \underline{V}_{1}=12+j 8 \\
& \underline{I}_{1}=\underline{V}_{1} /(-j 4)=-2+j 3 \\
& \underline{I}=\underline{I}_{1}+\underline{I}_{2}=-1+j 3 \\
& \underline{V}=6 \underline{I}-3 \underline{V}_{x}+\underline{V}_{1}=6+j 2 \\
& Z=\underline{V} / \underline{I}=-j 2
\end{aligned}
$$

$$
-j 4 \Omega{\underset{T}{T}}_{-}^{+} \underline{V}_{1} \quad j 8 \Omega \underline{-}_{x}^{+} \quad \underline{I}=\underline{V} / Z=10 A \angle 90^{\circ}
$$

$\omega=1000$

(b) Frequency-domain diagram
$\underline{I}_{1}=\left(\underline{I}_{1} / \underline{I}\right) \underline{I}=11.4 \mathrm{~A} \angle 105.3^{0}$
$i_{1}=11.4 \cos \left(1000 t+105.3^{0}\right) A$
$v=20 \cos 1000 t(V)$ Use proportionality

Example 6.10: Phase-Sift Oscillator

- Design goal: At one particular frequency,

$$
v_{\text {out }}=v_{\text {in }} .
$$

(b) Phase-shift network in the frequency domain

(b) Phase-shift network in the frequency domain

Use proportionality and let $I_{2}=1$,
Oscillation requires : $\omega L=2 / \omega C$
$\frac{\underline{V}_{\text {in }}}{\underline{V}_{x}}=1+\left(\frac{L}{C R^{2}}\right)+j\left(\omega L-\frac{2}{\omega C}\right) / R$

$$
\omega_{O S C}=\sqrt{2 / L C}
$$

$$
\text { when } \omega=\omega_{O S C}, \frac{\underline{V_{i n}}}{\underline{V}_{x}}=K=1+\left(\frac{L}{C R^{2}}\right)
$$

Superposition

- An ac source network is any two-terminal network that consists entirely of linear elements and sources. If there are more than one independent source, all of them must be at the same frequency so that the phasor method can be applied.

Frequency Domain Thévenin Parameters

- Frequency-domain Thevenin parameters:
- the open-circuit voltage phasor: $\underline{V}_{o c}$
- the short-circuit current phasor: $\underline{I}_{s c}$
- Thévenin impedance: $Z_{t}=\underline{V}_{o c} / \underline{I}_{s c}$

Example 6.11: Application of an AC

 Norton Network.

$$
\begin{aligned}
& Z_{t}=j 40 \| 280-j 20=20 \Omega \angle 73.7^{0} \\
& \underline{V}_{O C}=\frac{280}{280+j 40} 10=9.9 V \angle-8.13^{0} \\
& \underline{I}_{S C}=\frac{V_{O C}}{Z_{t}}=0.495 A \angle-81.8^{0}
\end{aligned}
$$

Example 6.11: (Cont.)

$$
Y_{e q}=\frac{1}{Z_{t}}+\frac{1}{Z} \text { and } \underline{V}=\underline{I}_{S C} / Y_{e q}
$$

$|V|$ is maximum if $\left|Y_{e q}\right|$ is minimum

$$
\begin{aligned}
& Y_{e q}=(0.014+G)+j(B-0.048) \\
& Y=0+j 0.048 S \\
& \underline{V}=35.4 V \angle-81.8^{0}
\end{aligned}
$$

AC Mesh Analysis

- By using phasors, impedance and admittance, node analysis and mesh analysis are still applicable assuming all independent sources are at the same frequency.
- AC mesh analysis:

$$
[Z][I]=\left\lfloor\underline{V}_{S}\right\rfloor \quad \text { or } \quad[Z-\tilde{Z} \mid \underline{I}]=\left\lfloor\underline{\tilde{V}}_{S}\right\rfloor
$$

Example 6.12: Systematic AC Mesh Analysis

Example 6.12: (Cont.)

(b) Frequency-domain diagram with one unknown mesh current
Single mesh equation : $Z \underline{I}_{1}=\underline{V}_{S}$

$$
\begin{aligned}
& Z=8+j 4-j 10=8-j 6 \Omega \\
& \underline{V}_{S}=15+j 26-(-j 10)=15+j 36 V \\
& \underline{I}_{1}=3.9 A \angle 104.3^{0} \\
& i_{1}(t)=3.9 \cos \left(10 t+104.3^{0}\right)
\end{aligned}
$$

AC Node Analysis

$$
\begin{gathered}
{[Y][V]=\left\lfloor\underline{I}_{S}\right\rfloor} \\
\text { or } \\
\left.\mid Y-\tilde{Y}\rfloor \underline{V}]=\mid \underline{\underline{I}}_{S}\right\rfloor \\
\text { with controlled sources }
\end{gathered}
$$

Example 6.13: Systematic AC Node Analysis

Constraint equation: $I=\left(\underline{V}-\underline{V}_{I}\right) / j 4$

Example 6.13: (Cont.)

$$
\begin{aligned}
& {[Y]=\frac{1}{20}\left[\begin{array}{cc}
6-j 5 & -2 \\
-2 & 3+j 3
\end{array}\right]} \\
& {\left[\begin{array}{l}
\underline{I}_{s}
\end{array}\right]=\left[\begin{array}{cc}
2 \underline{I}+\underline{V} / j 4 \\
-2 \underline{I}
\end{array}\right]+\left[\begin{array}{c}
-j 9 \\
j 6
\end{array}\right]+\left[\begin{array}{cc}
j 0.5 & 0 \\
-j 0.5 & 0
\end{array}\right]\left[\begin{array}{l}
\underline{V}_{1} \\
\underline{V}_{2}
\end{array}\right]} \\
& {\left[\begin{array}{cc}
6-j & -2 \\
-2+j 10 & 3+j 3
\end{array}\right]\left[\begin{array}{l}
\underline{V}_{1} \\
\underline{V}_{2}
\end{array}\right]=\left[\begin{array}{c}
-j 180 \\
j 20
\end{array}\right]} \\
& \underline{V}_{1}=10.4 V \angle-22.3^{0} \\
& \underline{I}=1.15 A \angle-31.1^{0} \\
& Z_{1}=\frac{\underline{V}_{1}}{\underline{I}}=9.03 \Omega \angle 8.8^{0}=8.92+j 1.39 \Omega
\end{aligned}
$$

Chapter 6: Problem Set

- 7, 17, 24, 32, 36, 41, 44, 47, 51, 53, 57, 59

