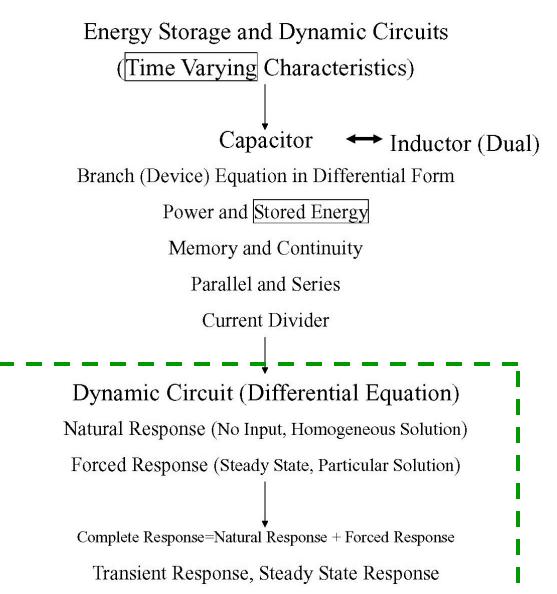
<u>Chapter 5: Energy Storage and</u> <u>Dynamic Circuits</u>

Chapter 5: Outline



Capacitor (Brief)

Branch equation

instantaneous power : $p = vi = Cv \frac{dv}{dt}$ $\downarrow v = C \frac{dv}{dt}$ instantaneous stored energy: $w = \frac{1}{2}Cv^2$ **Electrical memory** $v(t) = \frac{1}{C} \int_{-\infty}^{t} \frac{d\mathbf{l}}{dt} d\mathbf{l} = v(t_0) + \frac{1}{C} \int_{t_0}^{t} \frac{d\mathbf{l}}{dt} d\mathbf{l}$ Voltage continuity when the current is finite. $v(t_j^+) = v(t_j^-) + \frac{1}{C} \int_{t_j^-}^{t_j^+} i(\boldsymbol{l}) d\boldsymbol{l}$ v_c is the preferred variable.

Inductor (Brief)

Branch equation

instantaneous power : $p = vi = Li \frac{di}{dt}$ $v = L \frac{di}{dt}$ instantaneous stored energy : $w = \frac{1}{2}Li^2$ <u>Electrical memory</u> $i(t) = \frac{1}{L} \int_{-\infty}^{t} v(\mathbf{I})d\mathbf{I} = i(t_0) + \frac{1}{L} \int_{t_0}^{t} v(\mathbf{I})d\mathbf{I}$

Current continuity when the voltage is finite.

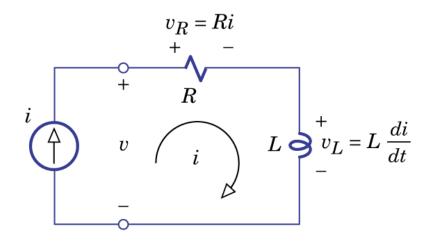
$\underline{i_L}$ is the preferred variable.

Dynamic Circuits

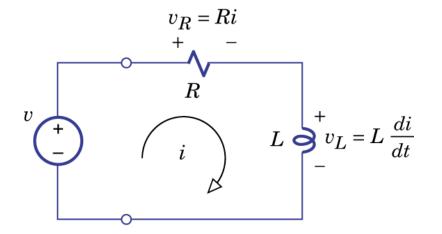
Dynamic Circuits

- A circuit is dynamic when currents or voltages are time-varying.
- Dynamic circuits are described by differential equations.
- Order of the circuit is determined by order of the differential equation.
- The differential equations are derived based on Kirchhoff's laws and device (branch) equations.

First-Order Dynamic Circuits

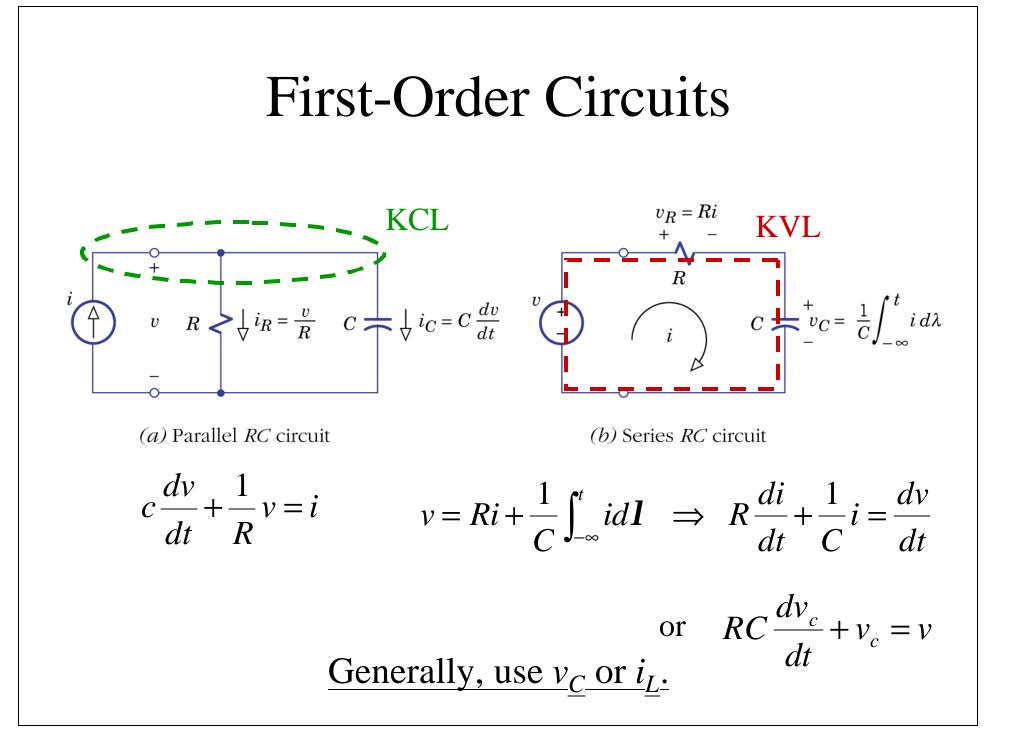


(*a*) Series *RL* network with a current source



(b) Series *RL* network with a voltage source

direct form : $v = L\frac{di}{dt} + Ri$ indirect form : $v = L\frac{di}{dt} + Ri$ Generic form (differential): $a_1\frac{dy}{dt} + a_0y = f(t)$ Forcing function

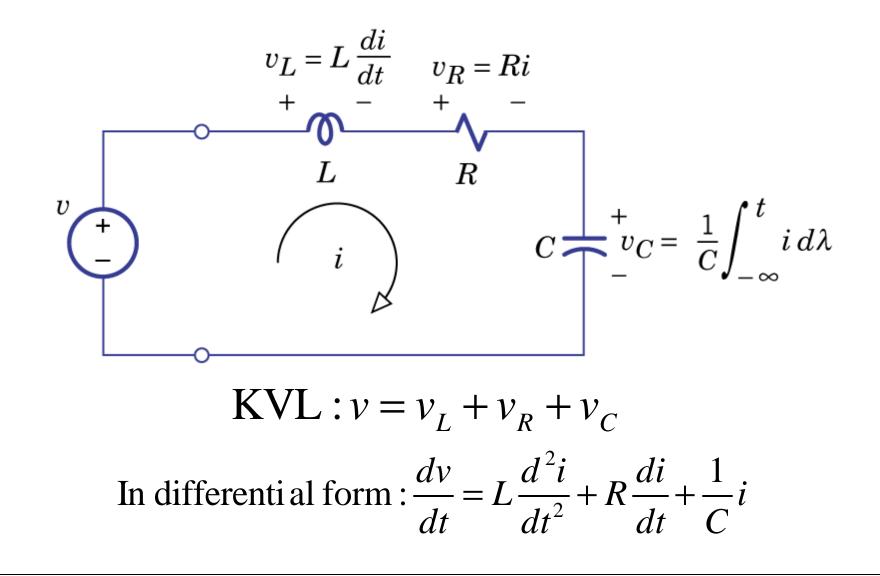


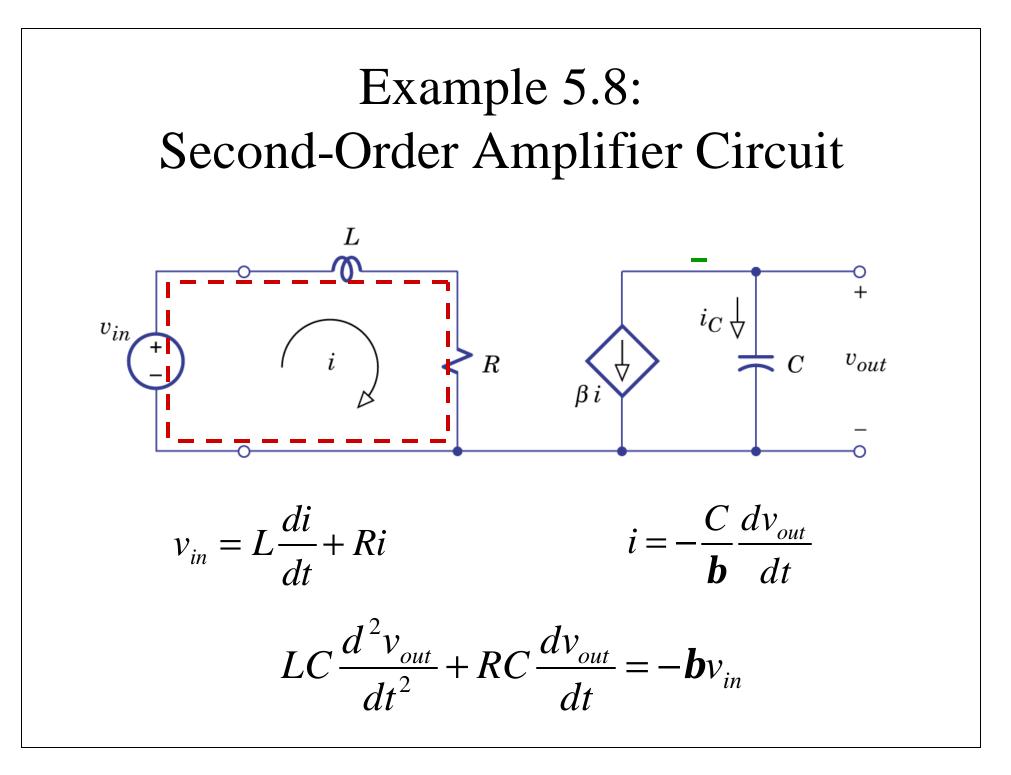
Second-Order Circuits

• Second-order circuits: circuits described by a second-order differential equation.

Generic form:
$$a_2 \frac{d^2 y}{dt^2} + a_1 \frac{dy}{dt} + a_0 y = f(t)$$

Second-Order Circuits





Response:

- Natural, Forced
- Transient, Steady state
- many more,...

Natural Response

- Natural response $y_N(t)$ is the solution of the circuit equation with the forcing function set to zero. It is also known as the complementary solution.
- With the forcing function set to zero, the differential equation becomes homogeneous.
- A homogeneous differential equation can be solved using the characteristic equation along with the initial condition.
- First-order circuits require one initial condition. Second-order circuits require two initial conditions.

First-Order Circuits

$$a_1 \frac{dy_N}{dt} + a_0 y_N = 0$$

Characteristic equation : $a_1s + a_0 = 0$

$$\Rightarrow s = -\frac{a_0}{a_1}$$

$$y_N(t) = Ae^{st} = Ae^{-\frac{a_0}{a_1}t}$$

A is determined by initial condition $y_N(0^+) = A = Y_0$

Second-Order Circuits

$$a_2 \frac{d^2 y_N}{dt^2} + a_1 \frac{d y_N}{dt} + a_0 y_N = 0$$

Characteristic equation : $a_2s^2 + a_1s + a_0 = 0$

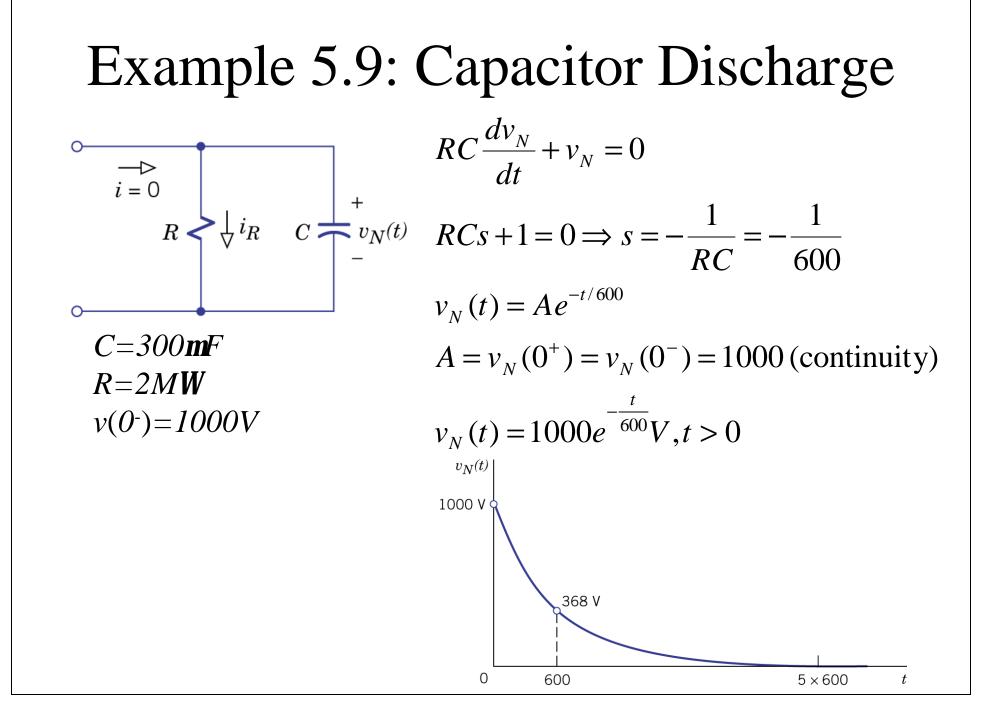
$$\Rightarrow s = \boldsymbol{a}_1, \boldsymbol{a}_2 \quad \left(\frac{-a_1 \pm \sqrt{a_1^2 - 4a_2 a_0}}{2a_2}\right)$$

 $y_N(t) = A_1 e^{a_1 t} + A_2 e^{a_2 t}$

 A_1, A_2 are determined by two initial conditions $y_N(0^+)$ and $\frac{dy_N(0^+)}{dt}$

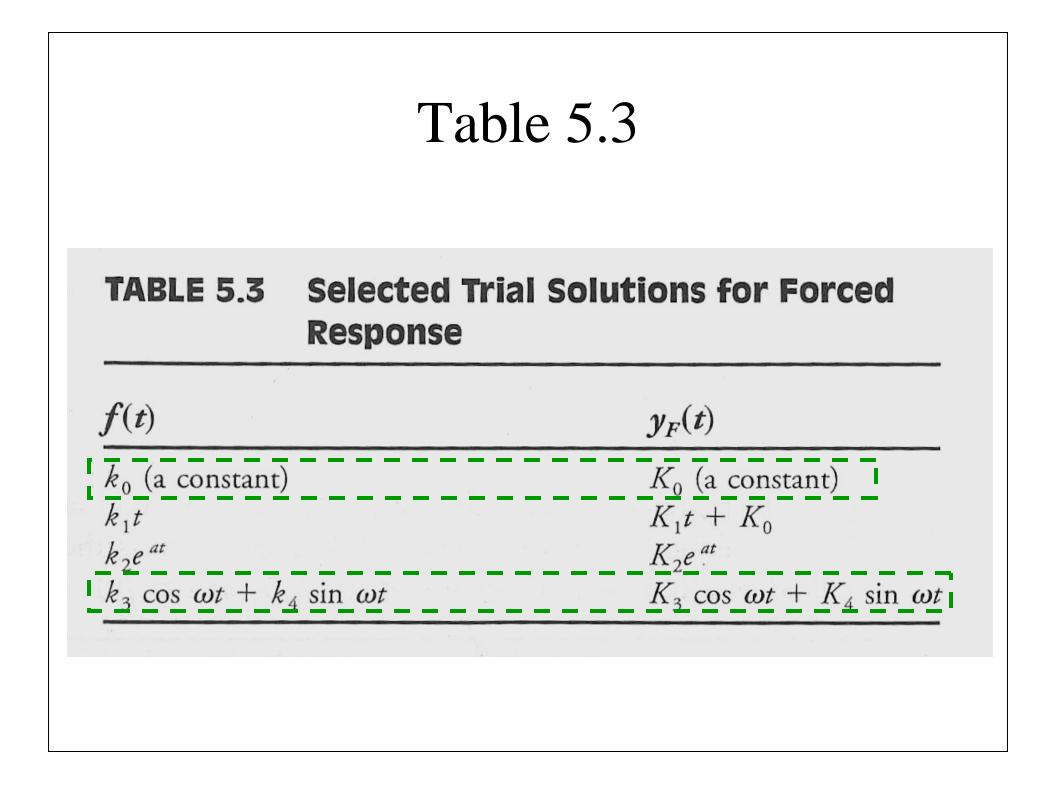
Stable Circuit

- A circuit is stable if the circuit variable $y_N(t) \rightarrow 0$, as $t \rightarrow .$
- A circuit is exponentially stable if the circuit variable $y_N(t) \rightarrow 0$, as $t \rightarrow$ in an exponential form.

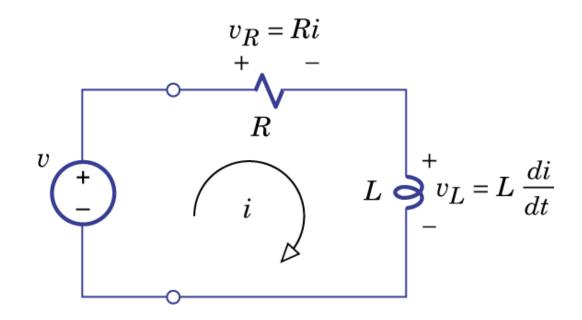


Forced Response

- Forced response y_F(t) is the solution of the inhomogeneous differential equation (i.e., the forcing function is not zero), independent of any initial conditions. The solution is also known as the particular solution.
- Please refer to Table 5.3 for method of undetermined coefficients.



Example 5.10 Sinusoidal Forced Response



(b) Series *RL* network with a voltage source

R=4W L=0.1H $V(t)=25\sin 30t$

Example 5.10 Sinusoidal Forced Response

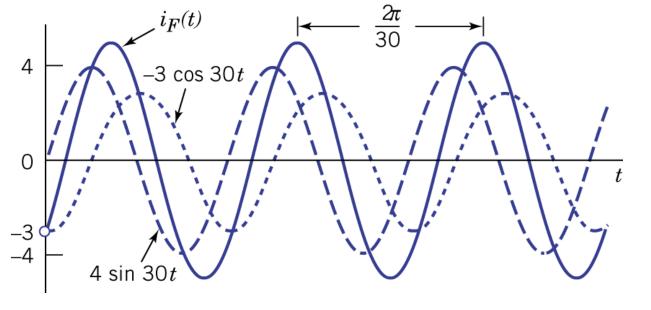
.

$$0.1 \frac{di_F}{dt} + 4i_F = 25 \sin 30t$$

$$i_F(t) = k_3 \cos 30t + k_4 \sin 30t$$

after substitution, we have $k_3 = -3, k_4 = 4$

$$i_F(t) = -3\cos 30t + 4\sin 30t \quad (\text{or } i_F(t) = A\cos(30t + \mathbf{q}))$$



If the forcing function contains any term proportional to a component of the natural response (i.e., excitation of a natural frequency), then the term must be multiplied *t*.

Example 5.11: Exponential Forced Response

$$0.1\frac{di}{dt} + 4i = v$$

homogeneous solution : $0.1s + 4 = 0 \Rightarrow s = -40$
 $v = 10e^{-bt}$

if b = 20 $i_F(t) = k_2 e^{-20t}$ $k_2 = 5$ $i_F(t) = 5e^{-20t}A$ if b = 40 $i_F(t) = k_2 t e^{-40t}$ $k_2 = 100$ $i_F(t) = 100 t e^{-40t}A$

Complete Response

- Complete response is the sum of the natural response and the forced response, i.e., $y(t) = y_F(t) + y_N(t)$.
- The constants in $y_N(t)$ are evaluated from the initial conditions on with the complete response.
- For a stable circuit, $y(t) = y_F(t)$, as $t \rightarrow$, since $y_N(t) \rightarrow 0$, as $t \rightarrow$.
- The circuit is in the steady state if $y_N(t)$ is negligible compared to $y_F(t)$.
- Before arriving the steady state, the circuit is in the transient state.

Example 5.12: Complete Response Calculation (RL)

$$0.1\frac{di}{dt} + 4i = v, \ i(t) = 0 \text{ for } t < 0$$

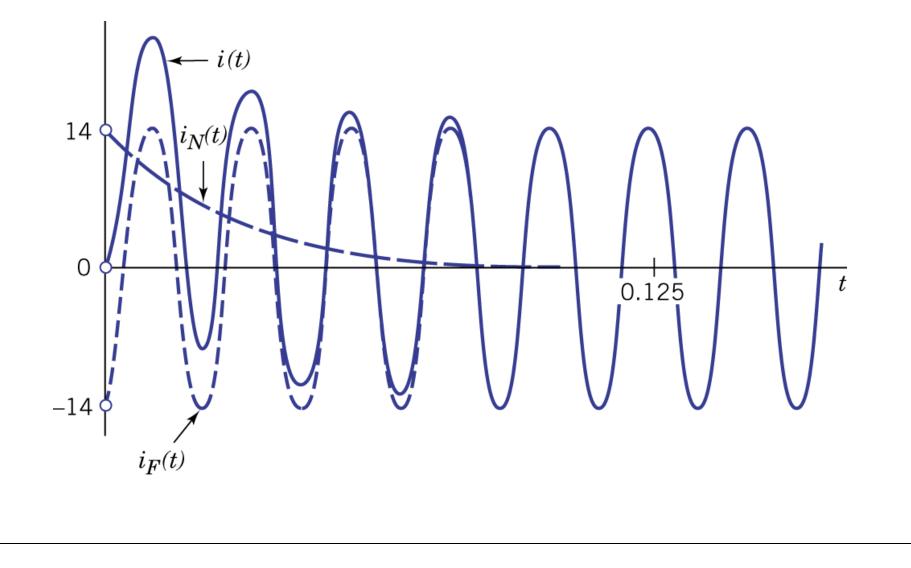
 $v(t) = 400 \sin 280t$, for t > 0

homogeneous solution : $i_N(t) = Ae^{-40t}$

particular solution : $i_F(t) = -14\cos 280t + 2\sin 280t$

complete response : $i(t) = i_N(t) + i_F(t) = Ae^{-40t} - 14\cos 280t + 2\sin 280t$ $i(0^+) = 0 = -14 + A$ A = 14

Example 5.12: Complete Response Calculation (RL)



Chapter 5: Problem Set

• 42, 44, 45, 48, 54, 61, 64