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Voltage continuity when the current is finite. 



Inductor (Brief)
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Dynamic Circuits 



Dynamic Circuits

l A circuit is dynamic when currents or voltages 
are time-varying.

l Dynamic circuits are described by differential 
equations.

l Order of the circuit is determined by order of 
the differential equation.

l The differential equations are derived based on 
Kirchhoff’s laws and device (branch) equations.



First-Order Dynamic Circuits
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First-Order Circuits
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Second-Order Circuits

l Second-order circuits: circuits described by a 
second-order differential equation.
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Second-Order Circuits
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Example 5.8: 
Second-Order Amplifier Circuit
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Response: 
- Natural, Forced
- Transient, Steady state
- many more,…



Natural Response

l Natural response yN(t) is the solution of the circuit 
equation with the forcing function set to zero. It is 
also known as the complementary solution.

l With the forcing function set to zero, the differential 
equation becomes homogeneous.

l A homogeneous differential equation can be solved 
using the characteristic equation along with the initial 
condition.

l First-order circuits require one initial condition. 
Second-order circuits require two initial conditions.



First-Order Circuits
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Second-Order Circuits
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Stable Circuit

l A circuit is stable if the circuit variable yN(t) à
0, as tà∞.

l A circuit is exponentially stable if the circuit 
variable yN(t) à 0, as tà∞ in an 
exponential form.



Example 5.9: Capacitor Discharge
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Forced Response

l Forced response yF(t) is the solution of the 
inhomogeneous differential equation (i.e., the 
forcing function is not zero), independent of 
any initial conditions. The solution is also 
known as the particular solution. 

l Please refer to Table 5.3 for method of 
undetermined coefficients.



Table 5.3



Example 5.10 Sinusoidal Forced Response

R=4Ω
L=0.1H
V(t)=25sin30t



Example 5.10 Sinusoidal Forced Response
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If the forcing function contains any term 
proportional to a component of the natural 
response (i.e., excitation of a natural 
frequency), then the term must be multiplied t.



Example 5.11: Exponential Forced Response
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Complete Response

l Complete response is the sum of the natural response 
and the forced response, i.e., y(t) = yF(t) + yN(t) .

l The constants in yN(t) are evaluated from the initial 
conditions on  with the complete response.

l For a stable circuit, y(t)= yF(t), as tà∞, since 
yN(t)à0, as tà∞.

l The circuit is in the steady state if yN(t) is negligible 
compared to yF(t).

l Before arriving the steady state, the circuit is in the 
transient state.



Example 5.12: 
Complete Response Calculation (RL)
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Example 5.12: 
Complete Response Calculation (RL)



Chapter 5: Problem Set

l 42, 44, 45, 48, 54, 61, 64


