INTRODUCTION TO BIOMEDICAL ENGINEERING

PART III: Biomedical Signal Processing (Six Hours).

Instructor: Prof. Ju-Hong Lee. (Rm 517, Tel: 23635251 ext. 517, email: juhong@cc.ee.ntu.edu.tw)

Textbook: Eugene N. Bruce, "Biomedical Signal Processing and Signal Modeling",

John Wiley & Sons, Inc., New York, 2001.

Reference: Robert B. Northrop, "Signals and Systems Analysis in Biomedical Engineering",

CRC Press LLC, 2003.

<u>COURSE OUTLINE</u>:

- (I) Introduction to Biomedical Signals:
 - Signals from Physiological Systems ECG, EEG, EGG, EMG, ERG, etc.
 - Signals from Man-Made Instruments –
 CW Doppler Ultrasound signals, MRI signals, Positron Emission Tomography (PET) signals, etc.
 - Continuous-Time (CT) and Discrete-Time (DT) Signals.
 - Purposes of Processing Biomedical Signals.
- (II) Introduction to Linear System Theory:
 - Properties of Operators and Transformations.
 - The Impulse Response of a Linear System.
 - Convolution Form of an linear shift-invariant (LSI) System.
 - Relation to Signal Processing.

- Frequency Response of Discrete-Time Systems.
- (III) Modeling CT Signals as Sum of Sine Waves.
 - Orthogonal Functions and Sinusoidal Basis Functions.
 - Relationship of CT Fourier Transform (CTFT) to Frequency Response.
- (IV) Modeling DT Signals as Sum of DT Sine Waves.
 - The DT Fourier Series.
 - Fourier Transform of DT signals.
 - Sampling Process and Sampling Theorem.
- (V) Noise Removal and Signal Compensation.
 - Linear Digital Filters.
 - Digital Filtering of Biomedical Signals.