# 生醫超音波技術

### 台大電機系 李百祺

# Outline

- Fundamentals of ultrasound
- Focusing in acoustics
- Diffraction and array beamformation
- Image quality factors
- Ultrasonic blood flow estimation

# What is ultrasound?

# Characteristics of Ultrasound

- A mechanical wave:
  - -Characterized by pressure, particle velocity and displacement.
  - -Density change of the propagating medium.
  - -But it is still a wave, i.e., there is reflection, refraction, scattering, diffraction, attenuation...etc.

### Basics of Acoustic Waves

• Longitudinal Wave:



### **Basics of Acoustic Waves**

#### • Shear Wave:



# Characteristics of Ultrasound

#### • A mechanical wave:

- -Characterized by pressure, particle velocity and displacement.
- -Density change of the propagating medium.
- -But it is still a wave, i.e., there is reflection, refraction, scattering, diffraction, attenuation...etc.

### Sound Velocity and Density Change

 $v(x) = c_0 + (1 + \frac{B}{2A})u(x)$ Phase velocity
Nonlinearity
Particle velocity



### When Peak Pressure Is Very High



# Characteristics of Ultrasound

#### • A mechanical wave:

- -Characterized by pressure, particle velocity and displacement.
- -Density change of the propagating medium.
- -But it is still a wave, i.e., there is reflection, refraction, scattering, diffraction, attenuation...etc.

### Reflection

#### Low Density to High Density

#### High Density to Low Density



### Refraction



# Acoustic Scattering



### Diffraction



# Characteristics of Ultrasound

- Sound wave with frequencies higher than the audible range (>20-25kHz):
  - Typical frequency range for biomedical applications:
     0.1-50MHz.
  - $-c=f\cdot \mathbf{l}.$
  - Sound (propagation) speed in soft tissues are around 1500m/sec. It becomes higher in hard tissues (e.g., bone).

#### Table IV Velocity and acoustic impedance of pertinent materials and biological tissues at room temperature (20–25°C)

|                                                                                                                  | Velocity<br>(m/sec)                                                 | Impedance × 10 <sup>-6</sup><br>(kg/m²-sec) <sup>a</sup>                |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Water<br>Aluminum<br>Air<br>Plexiglas<br>Blood<br>Myocardium (perpendicular to fibers)<br>Fat<br>Liver<br>Kidney | 1484<br>6420<br>343<br>2670<br>1550<br>1550<br>1450<br>1570<br>1560 | 1.48<br>17.00<br>0.0004<br>3.20<br>1.61<br>1.62<br>1.38<br>1.65<br>1.62 |  |
| Skull bone                                                                                                       | 3360 (longitudinal)                                                 | 6.00                                                                    |  |

"Rayl is a unit commonly used for acoustic impedance. One rayl =  $1 \text{ kg/m}^2$ -sec.

# Characteristics of Ultrasound

- Affected by the elastic properties of the propagating medium:
  - Various modes of propagation.
  - Hooke's law: T=eS (tensor form in 3D).

 $c = \sqrt{B / r}$ 

Characteri stic impedance :  $Z_0 = \mathbf{r}c$ 

#### TABLE 9.3

#### REFLECTIVITY OF NORMALLY INCIDENT WAVES

| Materials at Interface         |   | Reflectivity |
|--------------------------------|---|--------------|
| Brain-skull bone               |   | 0.66         |
| Fat-bone                       |   | 0.69         |
| Fat-blood                      |   | 0.08         |
| Fat-kidney                     |   | 0.08         |
| Fat-muscle                     |   | 0.10         |
| Fat-liver                      |   | 0.09         |
| Lens-aqueous humor             |   | 0.10         |
| Lens-vitreous humor            |   | 0.09         |
| Muscle-blood                   |   | 0.03         |
| Muscle-kidney                  |   | 0.03         |
| Muscle-liver                   |   | 0.01         |
| Soft tissue (mean value)-water | ſ | 0.05         |
| Soft tissue-air                | ) | 0.9995       |
| Soft tissue-PZT5 crystal       | • | 0.89         |

.

### **Bio-Effects**

HeatingCavitation

# Ultrasound Heating





### **Bio-Effects**

HeatingCavitation

### Cavitation

- Formation and behavior of gas bubbles in acoustic fields.
- Transient cavitation: sudden growth and collapse of bubbles, resulting shock waves and very high temperatures.



# **Other Acoustic Phenomena**

- Radiation force.
- Sonoluminescence.
- ...etc.

### **Radiation Force**

• An ultrasonic wave exerts a static force on an interface or in a medium where there is a decrease in power in the wave propagation direction.



# **Other Acoustic Phenomena**

- Radiation force.
- Sonoluminescence.
- ...etc.

# Sonoluminescence

• Weak emission of light observable when high intensity ultrasound passing through a medium containing dissolved gases.





# What can ultrasound do in medicine and biology?

### Ultrasound in Medicine and Biology

- Diagnostics (as a wave):
  - -Imaging.
  - -Blood flow measurements.
  - -Bone density (indirect).
  - -...etc.

# Ultrasonic Imaging



### Ultrasound in Medicine and Biology

- Therapeutics:
  - -Heat generation:
    - Hyperthermia.
    - HIFU.
  - -Shock wave
    - Lithotripsy.
  - -...etc.

# Hyperthermia

Hyperthermia is a method of treating cancerous tissue by elevating the tissue temperature to 42.5 °C or above, and maintaining this for 30-60 minutes.



# Hyperthermia



Figure 3: Thermal contour images for (left) non-switched and (right) switched sonications.



Figure 4: T2 weighted image of thermal necrosis caused by (a) single four focus pattern and (b) switched focus pattern across axis.

### HIFU

- High Intensity Focused Ultrasound.
- In the focal point, the sudden and intense absorption of the ultrasound beam creates a sudden elevation of the temperature (from 85 to 100 °C) which destroys the cells located in the targeted zone.

### HIFU for Prostate Cancer



# Image Guided HIFU


#### Ultrasound in Medicine and Biology

#### • Therapeutics:

- -Heat generation:
  - Hyperthermia.
  - HIFU.
- -Shock wave
  - Lithotripsy.
- -...etc.

# Extracorporeal Lithotripsy

#### • The use of shock waves to destroy stones in the body.



# Extracorporeal Lithotripsy



#### Ultrasound in Medicine and Biology

- Sonoluminescence.
- Radiation force.
- Cavitation.
- Cosmetics.
- ...etc.

#### **Bio-Effects and Safety Requirements**

### Basics

- Safety regulations.
- Physical parameters vs. Bio-effects.
- Measurement techniques.
- Dose: Energy absorption in tissue.
  - Temperature rise, cell damage.
  - Dosimetry: measurements of such effects.
- Exposure: Characteristics of ultrasound field.
  - Pressure, intensity, power.
  - Exposimetry: measurements of temporal/spatial characterisitics.

#### **Bio-Effects**

- Temperature rise and cell damage (cavitation).
- FDA Track I: Pre-amendments.
  - $-I_{SPTA}$  (720 mW/cm<sup>2</sup>) and  $I_{SPPA}$  (190 W/cm<sup>2</sup>).
- FDA Track III:
  - TI (Thermal Index) and MI (Mechanical Index).
- ALARA (as low as reasonably achievable).

### **Bio-Effects**

- Thermal index (TI):
  - TIS, TIB, TIC.
  - Analytical.



- Mechanical Index (MI):
  - Experimental.
  - Destruction of bubble with different sizes at various frequencies.

$$\mathsf{MI} \equiv \frac{\mathsf{P}_{0.3}}{\sqrt{\mathsf{f}_{c}}}$$









#### **Real-Time Imaging**





#### The AcuNav Diagnostic Ultrasound Catheter







#### TransEsophageal Echocardiogram (TEE)











8 Week Fetus

Works-in-Progress

# **Clinical Applications**





(From www.acuson.com)

• OB/GYN, vascular, cardiac, transcranial, abdominal, musculoskeletal, endo-vaginal, endo-rectal, ocular, intra-vascular, ...etc.

#### Characteristics of Diagnostic Ultrasound

- Non-invasive.
- Safe (under regulations).
- Real-time.
- Reflection mode (similar to RADAR).
- Blood flow imaging.
- Access.
- Portable.
- Body type dependent.

#### Function Modes

- A-mode (A-scan, 1D).
- B-mode (Gray scale, 2D).
- 3D ultrasound.
- M-mode (motion)
- Color Doppler (2D, blood flow).
- Spectral Doppler (localized, blood flow).
- Audio Doppler.

## A-Scan (Amplitude, 1D)



## B-Scan (Brightness, 2D)



### 2D Scan Formats



limited view

limited acces wide view

wide view

### 3D Ultrasound



### M-Mode (Motion)



#### Transducers: Generation and Detection of Sound Waves (Section II)

### Ultrasonic Array Transducers



(From www.acuson.com)



#### Transducer

- Energy conversion: electrical ? mechanical.
- Generation and detection (speaker and microphone).
- Medical ultrasound: same device in MHz range.
- Piezoelectricity: electrical polarization ? mechanical strain.
- PZT, PVDF and composite materials are commonly used.

## Piezoelectricity

#### Anisotropy







Curie temperature:  $320^{\circ} - 370^{\circ}$ C.



#### Detection of Ultrasound

• Reciprocal to generation.



### **Design Considerations**

• Bandwidth and sensitivity.



### Acoustic Lens

#### • Fixed geometric elevational focusing.


### 1-D and 2-D Arrays





Hand-held 3-D probe from Kretztechnik



2-D matrix-array at Duke

### Factors in Image Quality

### Factors of Image Quality

- Spatial resolution.
- Contrast resolution.
- Temporal resolution.
- Uniformity.
- Sensitivity.
- Penetration.

#### **Spatial Resolution**

- Lateral and elevational : diffraction limited.
- Axial resolution : the width of the pulse.
- Given limited total bandwidth, there exists a tradeoff between axial and lateral/elevational resolutions.



#### Lateral Resolution (X)

- Diffraction limited.
- Determined by frequency, active aperture size and depth.
- Fixed transmit and dynamic receive focusing.
- Is dynamic transmit focusing possible?
- Is a bigger aperture always better?

### Elevational Resolution (Y)

- Fixed lens (geometric focus).
- Determined by frequency, aperture size and depth.
- 2D array and alternative 1D array designs.



#### Axial Resolution (Z)

- Pulse width (absolute bandwidth).
- System and transducer bandwidth.
- Transmit power.
- Attenuation consideration.
- Coded waveform long pulse + large bandwidth.

## Focusing and Diffraction: Resolution in the *x*-*y* plane (Section III)

### **B-mode Imaging**





### Linear Scanning



#### **Beam Formation Using Arrays**

#### Focusing:

### Curved Linear Scanning





## Sector Steering



### How is the resolution determined?

### Focusing $\leftarrow \rightarrow$ Beam Formation



• To form a beam of sound wave such that only the objects along the beam direction are illuminated and possibly detected.

Sidelobe

### Nomenclature

#### Good Focusing

X

beam pattern

#### Poor Focusing

x: Lateral, azimuthal, scany: Elevational, non-scanz: Axial, range, depth

Beam pattern Radiation pattern Diffraction pattern Focusing pattern

#### Pulsed Wave (PW) vs. Continuous Wave (CW)



#### **Radiation Pattern**



### How to focus?

### Beamforming

- Manipulation of transmit and receive apertures.
- Trade-off between performance/cost to achieve:
  - Steer and focus the transmit beam.
  - Dynamically steer and focus the receive beam.
  - Provide accurate delay and apodization.
  - Provide dynamic receive control.



Single Zone Focusing Multi-Zone Focusing Dynamic Focusing





A-scan:

V (t) = k 
$$\int \int \int \frac{R(x', y', z')e^{-2bz'}}{z'} B(x', y', z') p(t - \frac{2z'}{c}) dx' dy' dz'$$

B-scan:

S(x,t) = k 
$$\iiint R(x',y',z')B(x'-x,y',z')p(t-\frac{2z'}{c})dx'dy'dz'$$

Scanning  $\rightarrow$  Convolution (Correlation vs. Convolution)

## Imaging Model

$$p(t - \frac{2z'}{c}) = A(t - \frac{2z'}{c})\cos(2\mathbf{p}f_0(t - \frac{2z'}{c}))$$

Ideally,

$$S(x,t) = R(x,y_0,ct/2)$$

In practice,

 $B(\cdot)$ : determined by diffraction

 $A(\cdot)$ : determined by transducer bandwidth

#### **Diffraction from 1D Apertures**

• Free space Green's function:



### Focusing in the Far Field

ka<sup>2</sup> / 2z << 1

$$p(x',z) \approx \frac{e^{jkz}e^{jkx'^2/2z}}{z} \int_{-a}^{a} C(x)e^{-jkxx'/z} dx = \frac{e^{jkz}e^{jkx'^2/2z}}{z} F.T.[C(x)]$$

Aperture  $\leftarrow$  (*F*.*T*.) $\rightarrow$  Radiation Pattern

When not in the far field  $\rightarrow$  effective aperture function

C (x) = C (x) 
$$e^{-jkx^2/2z}$$

### Radiation Pattern of a Rectangular Aperture



#### Beam width vs. Aperture size and frequency

$$\left| p(x',z) \right| = \left| \int_{-a}^{a} e^{-jkxx'/z} dx \right| = \left| \frac{1}{jkx'/z} \left[ e^{jkx'a/z} - e^{-jkx'a/z} \right] \right| = \left| 2a \frac{\sin kx'a/z}{kx'a/z} \right| = \left| 2a \sin c(\frac{kx'a}{z}) \right|$$

#### Lateral Resolution

- Frequency
- Aperture size
- -3 dB, -6 dB, -10 dB, -20 dB,...etc.



#### Focusing in the Fresnel Region

 $Z^{2} >> (X - X')^{2}$ d (x,x') = z  $(1 + \frac{(x - x')^2}{z^2})^{1/2} \approx z + \frac{(x - x')^2}{2z}$  $p(x',z) \approx \frac{1}{z} \int_{-a}^{a} e^{jkz} e^{jk(x-x')^{2}/2z} dx = \frac{e^{jkz} e^{jkx'^{2}/2z}}{z} \int_{-a}^{a} e^{-jkxx'/z} e^{jkx^{2}/2z} dx$  $C(x) = C(x) e^{jq(x)}$  $p(x',z) \approx \frac{e^{jkz}e^{jkx'^2/2z}}{z} \int C(x)e^{-jkxx'/z}e^{jkx^2/2z}dx$ 

### Focusing: An Acoustic Lens

C (x) = 
$$|C(x)|e^{-jkx^2/2z}$$



When out of the fixed focal point:



#### Axial Intensity



# Implementation of Focusing Using Arrays (Section IV)

#### **Beam Formation Using Arrays**



 $O(t) = \sum_{i=1}^{N} S_i (t - t(x_i, R, q)) \leftarrow Delay and Sum$ 

$$t(x_{i}, R, q) = \frac{\left(\left(x_{i} - R \sin q\right)^{2} + R^{2} \cos^{2} q\right)^{1/2}}{c} = \frac{R}{c} \left(1 + \frac{x_{i}^{2}}{R^{2}} - \frac{2x_{i}}{R} \sin q\right)^{1/2}$$

In Fresnel region

$$t(x_{i}, R, q) \approx \frac{R}{c} \left( 1 + \frac{x_{i}^{2}}{2R^{2}} - \frac{x_{i}}{R} \sin q - \frac{x_{i}^{2}}{2R^{2}} \sin^{2} q \right)$$
$$= \frac{R}{c} \left( 1 - \frac{x_{i}}{R} \sin q + \frac{x_{i}^{2}}{2R^{2}} \cos^{2} q \right) = \frac{R}{c} - \frac{x_{i} \sin q}{c} + \frac{x_{i}^{2} \cos^{2} q}{2Rc}$$

Effective aperture size:  $2a \rightarrow 2a \cos q$ 

### Propagating Delays

**Transmit:** 

$$\boldsymbol{t}^{\mathsf{T}}(\mathbf{x}_{\mathsf{i}},\mathsf{R},\boldsymbol{q}) = -\frac{\mathbf{x}_{\mathsf{i}}\sin\boldsymbol{q}}{\mathsf{c}} + \frac{\mathbf{x}_{\mathsf{i}}^{2}\cos^{2}\boldsymbol{q}}{2\mathsf{R}\mathsf{c}}$$

Receive:

 $\boldsymbol{t}^{\mathsf{R}}(\mathbf{x}_{\mathsf{i}},\mathsf{R},\boldsymbol{q}) = \frac{2\mathsf{R}}{\mathsf{c}} - \frac{\mathsf{x}_{\mathsf{i}} \sin \boldsymbol{q}}{\mathsf{c}} + \frac{\mathsf{x}_{\mathsf{i}}^{2} \cos^{2} \boldsymbol{q}}{2\mathsf{R}\mathsf{c}}$ 

## Array -> Sampled Aperture


### Array Steering and Grating Lobes



### Grating Lobes



#### **Beam Sampling**



### Real-Time Image Formation (Section V)

#### Scan Conversion

• Acquired data may not be on the display grid.



### Scan Conversion



#### Scan Conversion



 $p(m,n) = c_{m,n,i,j}a(i,j) + c_{m,n,i+1,j}a(i+1,j) + c_{m,n,i,j+1}a(i,j+1) + c_{m,n,i,j+1}a(i+1,j+1)$ 

### Moiré Pattern



# Temporal Resolution (Section VI)

#### **Temporal Resolution (Frame Rate)**

- Frame rate=1/Frame time.
- Frame time=number of lines \* line time.
- Line time=(2\*maximum depth)/sound velocity.
- Sound velocity is around 1540 m/s.
- High frame rate is required for real-time imaging.

#### **Temporal Resolution**

- Display standard: NTSC: 30 Hz. PAL: 25 Hz (2:1 interlace). 24 Hz for movie.
- The actual acoustic frame rate may be higher or lower. But should be high enough to have minimal flickering.
- Essence of real-time imaging: direct interaction.

#### **Temporal Resolution**

- For an actual frame rate lower than 30 Hz, interpolation is used.
- For an actual frame rate higher than 30 Hz, information can be displayed during playback.
- Even at 30 Hz, it is still possibly undersampling.

(Section VII)

- Contrast resolution is determined by both spatial resolution and speckle noise variations.
- Speckle comes from coherent interference of diffuse scatterers. In-coherent processing must be used to reduce speckle noise.
- There exists a tradeoff between contrast and spatial resolutions.

• Contrast-to-Noise Ratio (CNR):

$$CNR = \frac{\langle I_1 - I_2 \rangle}{\mathbf{s}_{I_A}} = \frac{\langle \Delta I \rangle}{\mathbf{s}_I} \sqrt{N}$$

• On a log display





- Contrast resolution is primarily limited by speckle noise.
- Speckle is a multiplicative noise.
- On a logarithmic display,

 $\boldsymbol{S}_D \approx 4.34 dB.$ 

# Spatial vs. Contrast $CNR = \frac{10 \log \left(\frac{I_1}{I_2}\right)}{4.34} \sqrt{N}$

- Speckle noise is 4.34dB for true speckle, a figure of merit for detectability.
- CNR increases as speckle noise decreases, generally resulting in loss in spatial resolution.
- Both CNR and spatial resolution can be improved by reducing sample volume.

Doppler Techniques for Motion Estimation (Section VIII)

## Color Doppler Mode







### Power Doppler





03:06:28PM C7 # 35 5.0MHz R 0 KIDNEY /V ₽₩R TIS 100% 7.3 0/ -/3/VEA+4 2/4/+25.0MHz CEV 35dB 0:0 100% LEVEL: 78

### PW Doppler (Spectral Doppler)



### CW Doppler (Spectral Doppler)



# **Doppler Effect**







- Relative motion of the source causes a change in received frequency.
- Blood flow velocity is measured by detecting Doppler frequency shifts.

## **Doppler Equations**

 $f_d = f_s \frac{v_r + v_s}{c - v_s}$  $f_d \approx f_s \frac{(v_r + v_s)}{c}$ 

where  $f_d$  is the Doppler frequency shift,  $f_s$  is the carrier frequency, c is the sound velocity in blood,  $v_s$  and  $v_r$  are source and receiver velocities.

# Doppler Ultrasound

- Primary scattering site: red blood cell. The platelet is too small and the number of leukocytes is not significant.
- The red blood cell size is around several microns. Thus, scattering and speckle are also present.
- The red blood cells in a sample volume are assumed to move in unison.

# **Doppler Equations**



- Typical physiological flows (5-10m/sec at most) are much slower than sound velocity in the body (~1500m/sec).
- Doppler shift is doubled due to round-trip propagation.
- Only parallel flows can be detected.



#### Flow Pattern v. Velocity Profile


#### Flow Pattern v. Velocity Profile



#### Flow Pattern v. Velocity Profile



## **CW Doppler Processing**



#### Wall Filter (Clutter Filter)



# Audio Doppler

$$f_d = \frac{2vf_s}{c} \cos q$$

- For typical blood velocities and carrier frequencies, the Doppler shifts from blood happen to be in the human audible range (near DC to 20KHz).
- Positive shifts in one channel and negative ones in the other.
- Hilbert transform.
- Clinically useful.





#### $CW \rightarrow PW$

- <u>CW: No range resolution.</u>
- Sampling in time = sampling in range.
- $\rightarrow$  CW Doppler to PW Doppler.

#### Pulsed Wave (PW) Doppler





# PW System Diagram



Another View for PW Doppler,...

#### Autocorrelation Processing



## $PW \rightarrow Color Doppler$

- Single gate  $\rightarrow$  multiple gates.
- Local flow information  $\rightarrow$  2D flow information.
- Less time for velocity estimation: quantitative  $\rightarrow$  qualitative.

# **Color Doppler Parameters**



- Use efficient time domain correlation techniques to calculate flow characteristics.
- Auto-correlation of the Doppler signal.
- Commonly derived parameters are <u>mean velocity</u> (including directionality), variance and energy (power).

#### **Color Doppler Derivation**

 $R(t) \equiv \int_{-\infty}^{\infty} S(t + t) S^{*}(t) dt$  $R(t) = |R(t)| e^{jq(t)}$ 

$$\overline{\mathbf{w}} = \mathbf{q}'(0) \approx \frac{\mathbf{q}(\mathsf{T}) - \mathbf{q}(0)}{\mathsf{T}} = \frac{\mathbf{q}(\mathsf{T})}{\mathsf{T}}$$
$$\mathbf{s}^{2} \approx \frac{2}{\mathsf{T}^{2}} \left(1 - \frac{\mathsf{A}(\mathsf{T})}{\mathsf{A}(0)}\right) = \frac{2}{\mathsf{T}^{2}} \left(1 - \frac{|\mathsf{R}(\mathsf{T})|}{\mathsf{R}(0)}\right)$$
$$E = \int_{-\infty}^{\infty} P(\mathbf{w}) d\mathbf{w} = R(0)$$

# Color Doppler

- Flow parameters are mapped into colors for display (1D or 2D).
- Choice of map affects the presentation of Color Doppler images.

#### **Color Doppler: Signal Processing**



- Significant frame rate reduction.
- Small color boxes are often used to increase frame rate.
- Sophisticated systems utilize multiple beam formation to further increase frame rate.



#### FreeStyle<sup>™</sup> Extended Imaging Renal Transplant

Works-in-Progress

## **PW/Color Doppler Limitations**



## Velocity Ambiguity



## Range Ambiguity





 $c \cdot T_0 / 2$  OR  $c \cdot (PRI + T_0) / 2^?$ 

#### **Doppler: Complications**

- Non-trivial wall filters are required to remove interference from slow-moving objects.
- Adequate signal processing capabilities and sufficient dynamic range are necessary to detect weak flows.
- Conflicts with frame rate requirements.
- <u>Only parallel flow is detectable.</u>  $f_d = \frac{2vf_s}{c} \cos q$

# Is Quantitative Volume Flow Estimation Possible?

#### Ultrasonic Quantitative Blood Flow Estimation

• Blood volume flow rate (*Q*) equals blood flow with velocity (*v*) pasting a blood vessel cross sectional area (*Area*).

 $Q = v \times Area$ 

• The size of blood vessel cross section area can be obtained by B-mode scanning.



# Doppler Angle Must Be Known.

#### **Doppler Angle Estimation**

Doppler Spectrum Bandwidth (bw) vs. Lateral velocity ( $v \sin q$ )



#### **Doppler Angle Estimation** Flow with Spatial and Temporal Velocity Gradients



## **Doppler: Tissue Motion Imaging**

- Doppler principles can be used to visualize cardiac motion.
- Higher signal levels allow simpler wall filters and less number of firing.
- Suitable for cardiac applications.

#### • Heart motion parameters:

- Velocity: v = dw/dt.
- Displacement *w*: temporal integration of *v*.
- Strain rate: r = dv/dz.
- Strain *s*: temporal integration of *r*.





# Thank you!