Ultrasonic Strain Image Made by Speckle Tracking of B-mode Image

學生: 呂仁碩 李承諺 葉文俊

指導教授: 李百祺

Introduction

- Elasticity imaging can provide a significant adjunct to current diagnostic ultrasonic methods
- Most elasticity imaging is derived by RF data and few by envelope data.
- RF data elasticity imaging is more sensitive;
 envelope data is less noisy under larger strain

Strain estimation by RF data

Cross correlation of consequent A-line

$$s(i) = \frac{\Delta t(i) - \Delta t(i-1)}{\Delta T}$$

Strain estimation by envelope data

--Speckle tracking of B-mode image

- 1D-cross correlation of consequent column of pixels (like A-line of RF data)(Ophir): lateral displacement is hard to detect.

 2D-Block matching algorithm (Levinston, 1994; Yeung, 1997), time costing full search and multi-level methods

Goal of this project

- studying the differences of 1D and 2D methods
- studying the differences of full search and multilevel speckle tracking method
- searching other possible strain estimator

Materials and Methods

- Target: B-mode images
 - simulated data set
 - breast phantom
 - clinical breast tumor
- Method: 1D and 2D speckle tracking

Comparison of Elastogram1 (1D and 2 D)

1D

2D

99-97%

99-95%

99-97%

99-95%

 Comparison of correlation coefficients distribution (1D and 2D)

1D

2D

99-97%

99-95%

99-97%

99-95%

Comparison of arrow direction distribution
 (1D and 2 D) 1D 2D

99-95% 99-95%

1D 2D

Improved Speckle Tracking - Multi-level

Multiple levels, 9 points estimation in each level

Image Before In-plane Motion

Image After In-plane Motion

 Comparison of full search and mult-level speckle tracking method

Full search

Two level

D1

475311	427026	456354	ĵ
Mexicon (1873)	(111365)	W. C.	
479950	421806	423350	
500169	405354	405057	1

C1

0.1438	0.1397	0.0552
G2 - 1071-2747-207	(0.7736)	9445 0.05000
0.1021	0.1378	0.0935
0.0486	0.1856	0.1605

D2			
451723	426930	457179	
451620	(111516) 427890	424554	
482545	413751	411719	1
C2			
0.1463	0.1166	0.0326	
0.1353	(0.7655) 0.0969	0.0751	
0.0804	0.1434	0.1265	

 Comparison of full search method of sum of difference and correlation coefficient

Sum of difference (1-5)

Correlation coefficient

Dissingram of Smoot pharton (1-0)

Elongation

	Sum of differe	Sum of differences		efficients
	Minimal cc	Mean cc	Minimal cc	Mean cc
1-2	0.7387	0.8962	0.7387	0.8962
1-4	0.3944	0.7810	0.3944	0.7810
1-5	0.3520	0.7677	0.3520	0.7679

Interpolation (1pixel --> 5 pixels)

Vertical strain

Elongation

LSQSE(Least Square Strain **Estimator**)

Homogeneous Strain Image obtained by gel phantom From 1% applied of the displacement field

taking the gradient

The middle column from the LSQ strain image

LSQSE(Least Square Strain Estimator)

- 報告內容:
 - 原理說明—FFT之特性及優點
 - 文獻參考—Temporal Stretch Method
 - ■方法與步驟
 - ■結果與討論

原理說明—FFT之特性及優點

- FFT為快速演算法
- 具有 translation invariant特性 (Magnitude)

文獻參考—Temporal Stretch

- 由頻域對B-mode影像進行分析
 - Z軸方向的一段組織反射信號

■ 信號與系統理論 :

```
\begin{array}{ccc} \bullet & a(z) & \rightarrow & A( ) \\ a(kz) & \rightarrow & A( /k) \end{array}
```


■ 將此方法推廣至二維 :

方法步驟——形變分析

■ 使用一系列以photoshop進行縮放調整之 speckle影像進行模擬

方法步驟——形變分析

■ 將每張影像取出31*31 pixels部分進行 分析(不包含亮點)

方法步驟——形變分析

Frame

方法步驟—位移分析

Phase difference

/f = 2 * Z

SVD 1'st eigen image

以兩張相鄰strain~=1%之影像計算所得結果。

位移量 向下為正 單位 pixel

以十一張相鄰strain~=1%之影像計算所得結果。 (十張displacement影像複合之結果) → 位移量 向下為正 單位 pixel 位移量 向下為正 單位 pixel

同上一結果(十一張相鄰像計算所得)。 以profile表示,可以看出其線性程度。

討論

- ■壓縮1%的200*200模擬影像,確實可以偵測出 ±1pixel漸層變化的位移量。
- spatial domain的filter、constrain都 尚未派上用場。
- strain是位移量的微分。
- 如果有簡便之類似運算可代替SVD,將比傳統speckle tracking大幅節省運算量。

Discussion

- 1D method has higher sensitivity, but also higher noise (lower correlation coefficients).
- More diffuse distribution of strain signal than 2D method
- 2D method has higher precision rate (high correlation coefficients) and best X direction displacement estimate.
- Band like strain signals were estimated for simulation and phantom images, the cause may be due to quantitative error (accumulated of tiny strain relived at the similar row)

Discussion

- For clinical breast tumor images, 1D and 2D method could detect the strain both.
- Multiple level speckle tracking method would produce obvious error and is not suitable for ultrasonic strain estimation.
- Full search sum of difference method has near similar high precision rate as the correlation coefficients method
- Interpolation could increase the sensitivity but also the noise, long time period was used in calculation.

Future work

- Try the least square strain estimator proposed by Ophir group for smoothing the images(denoise?) in 1D (1 method?)
- Applying pyramid method for fasting the calculating speed of sum of difference method.
- Improving the interpolation method for reducing the noise.

References

- Yong-Sheng Chen, Yi-Ping Hung, Chiou-Shann Fuh "Fast Block Matching Algorithm Based on the Winner-Update Strategy "IEEE Trans on Image Processing 2001; 10 (8): 1212-1222.
- Yeung F, Levinson SF, Parker KJ. Multiplevel and motion model-based ultrasonic Speckle tracking algorithms. Ultrasoud in Med. & Biol 1998; 24(3): 427-441.
- Gao L, Parker KJ, Lerner RM, Levinson SF. Imaging of the elastic properties of tissue-a review. Ultrasoud in Med. & Biol 1996; 22(8): 959-977.
- Ophir J, Cespedes I, Ponnekanti H, yazdi Y, Li X. Elastography: a quantatative method for imaging the elastocity of biological tissures. Ultrasonic imaging 1991; 13;111-134.
- O'Donnell M, Skovoroda AR, Shapo BM, Emelianov SY. Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE Trans. Ultrason. Ferroelect Freq. Contr. 1994;41(3):314-325.
- Konofagou EE, Harrigan T, Solomon S. Assesment of regional myocardial strain using cardiac elastography: distiniguishing infarcted from non-farcted myocardium. 2001 IEEE ultrasonics symposium: 1589-92.