Digital Signal Processing-

Basic Concepts

Some materials from Dr. Larry Marple are acknowledge



Outline

® Background materials

® Continuous-time signals and transforms
® Fourier transform and properties

® Sampling and windowing operations

® Discrete-time signals and transforms
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DSP Building Blocks in Imaging

® Filter

® Modulator/demodulator
® Decimator/interpolator
® Fourier transformer

® Hilbert transformer

® Detector

® Autocorrelator

® Beamformer



Hierarchy of Signal & System Properties
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Temporal & Spatial Signal Distinction

® Continuous-time (CT) signals
Continuous-space (CS) signals
—> Analog signals

® Discrete-time (DT) signals
Discrete-space (DS) signals

—> Sampled-data signals (typically uniform
sampling)

® Digital signals: DT or DS signals with
quantized ampltitudes



Main Approach

® All DT (DS) DSP theory is derived from the
CT (CS) signal processing theory.

® Sampling scheme: one value per sampling
point.

® Sampling scheme: uniform temporal (spatial)
sampling intervals (will introduce periodicity).

x:n]z x(nT) T :Sampling interval (sec)

y m] =x(mD) D :Sampling interval (m)



Signal Representation Domains

® ¢ (time, sec) € -2 f (temporal frequency,
cycles/sec=Hertz)

® J (space, m) € -2 k (spatial frequency,
wavenumber, cycles/meter)
or A=1/k (wavelength, meters/cycle)

® (¢, d) (propagating waves, coupled time and
space signal) €2 (f, k) Coupled frequencies

(k=f/c)
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Complex Numbers and Complex
Arithmetic

® Required to define roots of polynomials:

z2+1=0

® Required to define solutions of linear
differential (difference) equations:

de(S)
ds’

+X(s)=0



Complex Addition and Subtraction

Im
A+ B

Im [A] <

Im [B] <

Re




Complex Conjugate
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Complex Multiplication

-B=(ab —ab)+ j-(ab —ab )=Re|AB|+Im|4B]
“kisreal, Re[kB] =k Re[B],Im[kB]= kIm[B]



Complex Division (Rationalization)




Complex Number in Exponential Form

, Tja _ 4o
® Euler’s formula: € =Cosa@ T jsina i
® Complex number in exponential form: 4=|4je” ¢

lm

1

Sin &

A-B=|A|B|Z§,+ ¢,
A4 |4

B: B 4¢a_¢b

j=1,90°




Complex Signals

® Signals represented as a pair of linked real-
valued signals:

Y0 =1y, 0, 3,(0f =y, O+ -y, (1)
y.(¢) : real part or in - phase component (I)

y.(t) :1maginary part or quadrature - phase component (Q)



Complex Numbers 1in the Complex Plane
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Complex Signals

® Created from real-valued signals by operations such
as

O Complex modulation/demodulation (aka quadrature
modulation)

O Fourier transformation
O Complex filtering
O Baseband signal generation from memory

® Advantages
O Simplifies mathematical analysis
O Reduce hardware data rates

O Reduces arithmetic and filtering requirements for
modulation/demodulation/phase adjustment



Advantage of Complex Representation:
Modulation as an Example

X (Z) = a, (t) . eﬁl(t)’ X, (t) =a, (f) _ eez(t)

X (6)x,(0) = [, (1) - a, (1) "

or

x (1) =a,(t)-cosb (), x,(t)=a,(t)-cosb,(?)

x,(£) %, (t) = %[al (t)- a, ()] cos(8,(t) - 6,(t))+cos(6, (1) + 6,(1))]



Arbitrary Real Signal

® Exponential argument 1s an arbitrary function
of ¢

] . .
x(t)=—a(t)e’’" + 1 a(t)e "

2, 2

analyticsignal conjugate analytic signal

a(t) : envelop function



Do Negative Frequencies Exist?

COMPONENT LAGS OR LEADS IN-PHASE COMPONENT BY 90°




Continuous-Time Signals and Transforms



Continuous-Time System Response

() —  hp | > 1(?)

v =[ h(@)x(t-7)ydr=| h(t-r)x(r)dz
= h(1)* x(1) = x(£) * h(7)

® Consider responses to the following inputs

OComp!
OComp!

ex exponential signal
ex sinusoidal signal

OModul

ated Gaussian signal

OlImpulse function (limit of Gaussian signals)



Continuous-Time System Response to
Complex Exponential

® Motivation for Laplace transform

Letx(t)=e",s=0c+ jw
w0y =[ h(@)e"Vdr=e"H(s).
where H (s) 1s the Laplace transform of /(%)

for limits and s where integral exists

® ¢ 1s an eigenfunction of the LTI CT system
® H(s) 1s the continuous-time system function



Continuous-Time System Response to
Complex Sinusoidal Signal

® Motivation for Fourier Transtorm

Jjat

Lets =0+ jw,x(t)=¢e" =e’” =coswt+ jsin wt
H(s = jo)=H(w)= j " h(r)e ' dr
where H (w) 1s the Fourier transform of /(z)

® Fourier transform of the system temporal
function is the system response function to
input complex sinusoidal signals

LT = FT{h(t)e™ }



Gaussian Signals

® Unmodulated Gaussian Signal (the transform
1s also Gaussian)

g)=e™'"" SG(f)=Te " "

® Modulated Gaussian Signal (with complex
sinusoid)

x(t) = g(t)4e”™"" < X (f)=G(f)*A5(f - [.)

_ AT U ST



Body Ultrasound Attenuation Filter

® Frequency domain attenuation response

I(2) EA I(z+Az)

— —

Z 7Z+Az
A I(z+A2)=A-T1(2)-2PA-[(2)A~

~D g priz)
oz

[(z)=1,e"”
p=at




Body Ultrasound Attenuation Filter

H(Z f)ze—(az%+]2ﬂ1"z/c)
:

[(z,f)=1|H (z,0) =I,e™*



Body Ultrasound Attenuation Filter

® Assuming a Gaussian signal:

=1

S, (£)) = ¢ 7

—(ﬂ)2—4a]€f

S (RO =[S, (H)f e =¢ °

f—f A
Iy 2RR 0
S (R = e ) oo

=1 -20"aR.







Impulse Function

® Introduced 1n 1947 by Dirac

® Useful signal processing tool for
OSampling operations

ORepresenting the transform of sinusoidal signals

® Impulse 1s a brief intense unit-area pulse that
ex1sts conceptually at a point

f; S(t)dt =1



Impulse Function

® Visualize as a limiting sequence of a window
function, such as a Gaussian window

0 lim T g(t)dt =1

A A
g(?) G(w)
<« lim M —p
7ii 4+ [T\
/:]:\ / \
> .: : .""- --..\'..‘
7 it 7 \
AL A I \¥ , s \ N




Impulse Function

® Properties
OProduct
x(1)5(1) = x(0)8(¢)
X(1)S(t - 1) = x()5(t — 7)

OConvolution

x(t)*0(t) = x(¢)
x(t)*o(t—1)=x(t—71)

OConvolution with an impulse results in a shift
operation



Continuous-Time System Response to
Impulse Function

Let x(¢) = 5(¢)
y0) = h(©)3(t-7)dz = h(t)

® Thus, A(?) has the interpretation as the impulse
response of the continuous-time system (filter).



Fourier Transform and Propertie:



The Fourier Transtform

® Forward Fourier transform (generally
complex-valued)

FTix(t)} = X (w) = j“; x(t)e ' dt
® Reverse (backward) Fourier transform
FT{X(0)}=x()= [ X(w)e'"dw

® Base Fourier transform from which all other
Fourier transform variations are derived.



The Fourier Transtform

® Distinguishing terminology
O aka Continuous-Time, Continuous-Frequency Fourier
Transform

O aka Continuous-Time, Fourier Transform (CTFT) where
“transform” conveys the 1dea of continuous-frequency
(Fourier “series” conveys discrete-frequency)

® Fourier transform amplitude and phase functions
O Amplitude response, magnitude response, amplitude spectrum
O Phase response, angle response, phase spectrum

O Contrast these with temporal signal amplitude and phase
functions



Even-Odd Signal Decomposition and
Fourier Transform Properties

® Any function can be separated into even and
odd components:
X(1) = Xy (1) + X, (1)
where .., (1) = [¥(0)+ X(-0)} (0 =~ [x() ~x(-0)
® Transform

X(@) = X 0 (@) + X gy ()

ven



Even-Odd Signal Decomposition and
Fourier Transform Properties

x(f) =Retx,,,, (O} + jIm{x,,, (O} + Relx,, (O} + jImix,, ()}
X (@)= Re{Xin(m)% J Im{gevem)% RelX,, (@)}+jIm{X, (o)}
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Symmetry Properties of a Signal and

1ts Fourier Transtorm
| <




Visualizing the System Response

At

A onplitode
Respense

o)

Phase
Revponse,

ComPLEX DATA

REAL DATA

A
12
i
.-m
.



The Logarithmic Scale
® Definition of decibel (dB)

dB =10log, (P/PF,,)
®If P=V7?/R

dB =10log,,(V*/V?2,)=20log, ,(V /V vof )

ref



Summary of Key CTFT Properties and

Functions

PROPERTY or FUNCTION FUNCTION TRANSFORM
Linearity ag(t) + bh(t) aG(f) + bH(f)
Time Shift h(t — to) H(f) exp(—j2~ fto)
Frequency Shift (Modulation) h(t) exp(327 fot) H(f —Jo)
Scaling (1/|e]) (/) H(af)
Temporal Convolution Theorem g(t) ®h(t) G(f)-H(f)
Frequency Convolution Theorem g(t) - h(t) G(f)®H(f)
Window Function Awind(t/To) 2AT sinc(2T, f)
Sinc Function 2AFy sinc(2Fyt) Awind(f/Fp)
Impulse Function Ab(t) A

Sampling (Replicating) Function

117 (2)

FmF(f)wF—_‘l/T




Special Signals and Their Transforms

: : X(1)
® Cosine signal N
1 J2nf.t 1 —j27nf .t
x(t)=cos2naft=—e’ "7 +—e 77"
2 2 T g

® Time-domain window function (aka
rectangular window)

T2 7 | Llf<T/2 |
HT(t):<1/29t :T/2<:>2TSlnC(2Tf),SlnC(t): SII;TﬂT
0, >T/2




Special Signals and Their Transforms

® Frequency-domain window function

1/F

2F sinc(2Ft) < I1,.(f)

F2 F/2



S1gn Function

(1,:>0
x(t)=sgn(t)=< 0,1 =0 < X(f) =
—1Lz<0

-J
A

® Will be useful to develop the Hilbert transform



Impulse Train

® Infinite periodic sequence of impulse functions
spaced T seconds apart

o L

® Transform 1s another impulse train
F=1/T

erp L]

3F-2F -F 0 F 2F 3F

>



Impulse Train

® Properties:

OProduct: In this case, the impulse train is called a
sampling function.

ix(nT)é‘(t —nT)

OConvolution: In this case, the impulse train is called
a replicating function.

ix(t—mT)

nm=—0a0



Graphical Illustration of Sequence of
Impulse Functions

) = S 8¢ - nT) & HY) =% % a(f " f;-,) (2.44)

= =0

A graphical development of this Fourier transform pair is illustrated in Fig. 2.11.

# hylt) = 14 2 cos (2mf 1) ‘H*l“’
i : —— - y —~s
‘J -1T U T v 2T \""' t @ _fn fo = 1? f

ha(t)=1+2 k% cos (2mkf 1)




Graphical Illustration of Sequence of
Impulse Functions

5
,h,ém =1+2 L cos (2mkio)
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Energy Preservation Between Domains

® Parseval-Rayleigh theorem

[ xoy @ar=[" XNy (Hdf
® Energy theorem (let x(¢)=y(7))

E = EO ‘x(t)‘zdt =f; ‘X (f )‘2df = energy

® Energy spectral density
xX(Nf



Matched Filter

® Objective: Determine system (filter) response
h(?) that maximizes the output energy of the
system responses for the given input signal
(assuming max 1s reached by time =¢,).

() =" x(h(t, ~tydt = FT{X (NH(f))

® Based on Schwarz inequality
H(f)=cX"(f) or h(t)=cx"({, —1)
) =E-[ |H([ df



Matched Filter

® Resulting operation 1s an autocorrelation.

y(t)=x(t)*x"(-t) =
[ 5@ +0de = FT X (DX (D)= FT X (0 |



Matched Filter and SNR

® Assume the noise input to the filter (X,(f)) 1s
uncorrelated with the filter and has frequency
independent distribution as a function of
frequency. We have

([ ()= N,

® The output noise power becomes

o =([" XV OHdr) = N[ [HC dr =N, | heoya



Matched Filter and SNR

® When using the matched filter

X2 -vdt | xXP()dt
SNRmaX = J_w ° — LOO = £
NO NO NO

® The maximum signal-to-noise ratio is
determined only by its total energy £, not by
the detailed structure of the signal.



Time-Bandwidth Product

® Approach using the area metric

a = x(t)dt/x(0)

B=| X(f)df/x(0)
a-fp=1

® Rule of thumb: bandwidth of the pulsed signal
1s roughly the reciprocal of the signal’s time
duration.




Time-Bandwidth Product

® Approach using the variance metric

o’ =4’ | £l dt/E

B =an*[ X df 1 E
o - [f > a constant

® Equality when x(¢) 1s Gaussian.

® Other metrics may be required to handle special cases
(e.g., bandpass signals with no content near DC).



Range and Velocity Accuracy in
Doppler Estimation
® Let

x(t)=x,(t)+n(t)

® With a matched filter, we have (the maximum
occurs at t=0)

a(t)=x,(=1)
y(t)= _EOXO (7)x, (f—z‘)dr+foon(r)xo (t—1t)dr=y, (z‘)+fwn(r)xo (t—1t)dr

® With noise, the maximum may shift to Az. Our
goal is to derive < Af° >



Range and Velocity Accuracy in
Doppler Estimation

® Taylor expansion

A,
Yo (A0) = 3y (O ==y (0)+ R

® We have

v (A =y, (0)+ A2y (0)E+ R

V(A= y2(0)=-B*E*AL?



v ={ xi(z=)x,(r)dr
yi0) =[x, (r)dr =47 [ £2X, () X, (£H)df

g LSHOX (DA Ax | X DX (Ddf

"X, (H) X, (Hrar E

v (0)=-pF



Range and Velocity Accuracy in
Doppler Estimation

® Define a noise signal

<gz> _ <y§ (0)- y§ (Az)> = <J'O;‘n(r)XO (T)‘2dr>

® We have

(62)=N,E =B E*(A?)

- 1
<Azz>_ﬂ%E/No)



Range and Velocity Accuracy in

Doppler Estimation
® Similarly
<Af 2> T :
® Thus @ BN

[<Af2><Af2>]1/2 - aﬂ(El/NO)

® Gaussian signals give poorer simultaneous
measurements of time and frequency than any
other signal.



Essentially Time-Limited and Band-
Limited Signals

® Signals cannot be sitmultaneously band-limited
and time-limited.

® Important for discrete-time applications that
signal be band-limited (for sampling) and also
for pulses to be time-limited (finite memory)



Essentially Time-Limited and Band-
Limited Signals

® Essentially time-limited

XN =X (1 =X =[x ar <e,
® Essentially band-limited
() —x, (O =[x [ | X(Ne"df| <,




Analytic and Causal Signals

® Causal and analytic signals are dual scenarios
that link I/Q components through a Hilbert
transform

® Causal signal 1s a signal that 1s 0 over negative
time.

® Analytic signal 1s a complex signal with a
transform that 1s 0 over negative frequency;
created from a real signal.



Analytic and Causal Signals

® Causal signal

x(£) = x,(1) +x,(1) = x,(0)[1 + sgn(?)]

| |
X - X *O(f)—7T— =X —jX *—
(f)=X.(f) { (f)—J } ()= JX(f)*—

® Analytic signal
X, (1) = x(£) * [5(0 - jL} = ()= jx(t)
Tt Tt
X,(f)= XNl +sen(f)]



Hilbert Transform

® Transforms time = time or frequency =2
frequency

HT{x(t)} = —x(f) * ; = jz jz (’; (_TZ) dr



Sampling and Windowing Operations



Frequency Definitions

® Signal frequency
OF (units of cycles per second, Hz)
® Sampling rate

OF=1/T, T 1s sampling interval in seconds (per sample)
OUnits of samples per second

® Fraction of sampling rate

Of/F=fT, dimensionless ratio (or cycles per sample)
OBounded by +/- 0.5 (normalized frequency)



Band-Limited Transtform Definitions

for Continuous-Time Signals

® Baseband (lowpass) real
signal

® Real bandpass signal

® Complex signal of one-
sided baseband real signal

® Compex signal of one-
sided bandpass real signal

® Baseband complex signal

B—»
el
[y

| -,
‘ ‘f




Creating One-Sided Complex Lowpass
Signals from Real Lowpass Signals

® Analytic lowpass signal

® Time-domain approach

x(1) o Delay |—— X(1)
HT Fliter ——> X(f)

® Frequency-domain approach

X(t)—-l FT |—>|Zeroout-f|—I| IFT |—>{Xr(t), X()}




Creating Baseband Complex Signals
from Real Bandpass Signal

® Complex demodulation (quadratic demodulation)
Ti_. M O)
. o o & X©® pad
® Original R g
1 ) [‘\ -a//l f
. X{t‘l'ew(-:ﬂﬂﬂﬂ @X(ﬂ L) - =24 op® 9 %
® Band-shift o S 2 s
X - exe (jonfb) <> RE-£) ol T ot '
®]ow pass filter bACEIATINNG —a L !
cos 2af 4 /{r/] ¢
® Implementation = é s e
p ii ‘ x LeF —> X [\!\ s

P T g 8



Four Basic Sampling and Windowing
Operations Linking CT and DT Signals

® Time sampling:

OCreates discrete-time signal (i.e., a time series)
® Frequency windowing;:

OCreates frequency-limited (i.e., band-limited) signal
® Frequency sampling:

OCreates discrete frequency transform (i.e., a Fourier
series)

® Time windowing:
OCreates time-limited signal



Time Sampling Operation

® Band-limited requirement

® Time sampling operation

® Graphical Depiction

SN

x, @+ Ts & X O@sriw] s

¢ Sampling repli cating e
TS = T‘L‘L}T(a FT§tst = tﬂ (9 ,F‘l‘
Tmg . JEs A7STES
A . N
- A 1 e T 12T
Samgle YT o T2 Somgle <-2F -F © F 2
Taterval Sntend
: ‘:T‘ aa v .I.
AT 113 1111111 Kol B f L1,
Sample Freq
s L



Selecting the Sampling Rate

® Real baseband case
® Complex baseband case
® Real bandpass case



Sampling Real Baseband Signals

Xps (1) =X, (£)- TS = TZxBLmT)(S(t nT) < ZXBL(f kF)

k=—0
=/
® Case 1 xfag X %l w0 xig Xmﬁ zF) Xou(E+F X, 06 Xpu(F~ "') X @-2F)
T>— i 1\'/}
2B J J t 1 1
S -7 o T T o T n"r
® Case 2
Xe (F+F) Xg () Xz (6-F)
r< e NN X
28 il N1 [ N
-V 5 s T
® Case 3
1 W
T = , . -(—-——-——P tovches |

28 RAAM M Ml‘




Strictly Band-Limited Signals Do Not
Exist in Practice

® Some degree of aliasing cannot be avoided in actual hardware
® Analog anti-aliasing filters are imperfect
® Analog-to-digital converters introduce digitization noise

@)
7; JE[I")
MM b e Ay g
// e fvantizahion error

® Seclect sample rate based on bandwidth at which the signal is
essentially band-limited.



Sampling Complex Baseband Signals

: } (Xl
® Signal and transform é [{;E E? In b 4 Jﬂu i

Re iitﬂi "Bfg ur ﬁfz
X ®) (6
® Case 1 Ty <P
| A //L 1 /J
T:_ -78 o 2B
2B X ©
® Case?2

® Minimum sampling rate for complex baseband signal: F=B.



Sampling Real Bandpass Signals

J(EEH ‘ X® ‘ B

F=2(f, +§) FAWNIAWAY [ e T ped
N T e
® Depending on relationship between F and B,
can actually select sampling rate as low as
F=2B (baseband sampling theorem).

N 11
® Demodulation 1s free!!! | f = m23+§;mis an integer,




Sampling Real Bandpass Signals

® The above discussion is only valid for narrow
band applications (fractional bandwidth 1s 40%
when m=1).



Frequency Windowing Operation

® Reconstruction of band-limited CT signal from DT
signal

® Signal and transform

I NANANA -

® Define frequency windowing operation (ideal low
pass filter)

Ew = wiad (2T+)

’ £7 ' §ew} = 1 e (¢/7) 1
A =Yy Var

+ "4
‘zr)"'? T 2T

oSsymes B E Vo



Frequency Windowing Operation

® Recover original transform by

X () FTEW} & X, (f)-FW

Xg (1) = ixBL(nT)sinc([t—nT]/T)

® Symbolic expression of the temporal sampling
theorem

X (0) =[x, (O)- TS [« FTUFW } & X, (f) =X, (/) * FTTS |]- F



Frequency Sampling Operation

® Dual to time sampling operation

® Assume continuous-time signal 1s time-limited, rather than
band-limited

Xrd) = @ for <d o A>T, |X,.(6)
3 /\___\/w".

5 To t

® C(Criteria to avoid temporal aliasing

Fret
I



Frequency Sampling Operation

® Frequency sampling operation

-+ = A/e! ™ an inteqer




Time Windowing Operation

® Signal and transform

X0 %o (0 & 1T @) Xﬂfﬂ 13(;4: F:ﬂ ®
M/J:;lg[] o

® Define one-sided time windowing operation

"Tw = h.-l'i"'ln“ ('E/f'r'/z) - 1) FT?W?; = ,-rrl s (T"{‘) i ‘E‘F(-j k’“T{F)

i
1‘{1. i




Time Windowing Operation

® Recovering original time signal
xps (1) TW < X s (f) % FT{TW |

X, @)=Te’™ > X, (kF")sinc([f —kF']/ F")
k=—o0

® Symbolic expression of frequency-domain
sampling theorem

X (2) = [xTL(t)*FT_l{FS}].TW<:>XTL(f):[XTL(f)'FS]*FT{TW}
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Discrete-Time Signals and
Transforms



Questions: How many Fourier
Transforms?

® Fast Fourier Transform (FFT)

® Discrete-Time Fourier Transform (DTFT)

® Continuous-Time Fourier Series (CTFS)

® Continuous-Time Fourier Transform (CTFT)
® Discrete Fourier Transform (DFT)

® Fourier Series (FS)

® Discrete-Time Fourier Series (DTES)



Answer: Just One!!!

® Fundamental: Continuous-Time Fourier
Transform (CTFT)

® All other Fourier-Based transforms are
derivable from the CTFT under specific signal
conditions



Signal and Transform Relationships Using
Both Time Sampling and Frequency Sampling

® General operations
OTime limiting/Band limiting
Olnterpolation
OSampling
OReplicating to create periodicity



Signal and Transform Relationships Using
Both Time Sampling and Frequency Sampling

® Special case of four operations for scenario to
derive DTFS (aka DFT)

OPERATION TIME FUNCTION ‘| TRANSFORM FUNCTION
Time Windowing TW = wind(2t/NT — 1) | F{TW} = NTsinc(NTf)
(NT-sec timewidth) cexp(—jaNTf)
Frequency Windowing | F~{FW} = &sinc(¢/T) FW = wind(27T'f)
(1/T-Hz bandwidth)
Time Sampling TR=TTI1) F{TS} =111, /7 (f)

(T-sec intervals)

Frequency Sampling F-HF8 k= [T xelt) FS = ﬁlﬁﬂ'mlfNT(f)
(1/NT-Hz intervals)




Four FTs through Sampling and Windowing
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Graphical Representation of the Four
Steps: CTFT - DTFT = DTFS
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Continuous-Time Fourier Transform

® Transforms
X(f)=[ xt)e*"dt

x(t)= [ X(f)e”"df
® Energy preservation theorem

[ @l ae=]" |xn[ar
® Convolution theorem

x(#)-y(t) < X(f)*Y(f)
x()* y(t) < X(f)-Y(f)



Discrete-Time Fourier Transform

® Operations
:a-r:,-:{ P 1X . ST ) th'rr-r
CITFT @— it ih E B —® DTFT
R
® Symbolic

Xprer = [Kg}f:“ﬂ]' T Q:'} -X'n‘“:-r = [K-ﬂ_l@’l‘ﬁ



Discrete-Time Fourier Transform

® Transforms
Xper () =T Zx(”T)e_]zﬂfT

Xprer (MT) = -‘-1/2T XDTFT(f)e]Mf df = x[n]
® Energy preservatlon theorem

r Z|XDTFT (nT)| j1/2T|XDTFT (f)|2df
O Convolutlon theorem

Xprpr (BT) Y prer (BT) < X o (F ) * Y ey ()
x(nT)*y(nT) < X(f)-Y(f)



Periodic Convolution
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Some Discrete-Time Fourier
Transform Properties

® Transform of most interest in our case

® Can be computed at uniform frequency

spacings for time-limited signals using the
DTEFS (aka DFT)

® Maintains CTFT even-odd properties and real-
Imaginary properties

® Time shift

® Frequency shift

® One-sided rectangular window



