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DSP Building Blocks in Imaging

Filter
Modulator/demodulator
Decimator/interpolator
Fourier transformer
Hilbert transformer
Detector
Autocorrelator
Beamformer



Hierarchy of Signal & System Properties

StochasticDeterministic

Time-invariant

Time-varying

Nonlinear

Linear



Temporal & Spatial Signal Distinction

Continuous-time (CT) signals
Continuous-space (CS) signals 

Analog signals
Discrete-time (DT) signals
Discrete-space (DS) signals 

Sampled-data signals (typically uniform 
sampling)
Digital signals: DT or DS signals with 
quantized ampltitudes



Main Approach

All DT (DS) DSP theory is derived from the 
CT (CS) signal processing theory.
Sampling scheme: one value per sampling 
point.
Sampling scheme: uniform temporal (spatial) 
sampling intervals (will introduce periodicity).
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Signal Representation Domains

t (time, sec) f (temporal frequency, 
cycles/sec=Hertz)
d (space, m) k (spatial frequency, 
wavenumber, cycles/meter) 
or λ=1/k (wavelength, meters/cycle)
(t, d) (propagating waves, coupled time and 
space signal) (f, k) Coupled frequencies 
(k=f/c) 



Acoustic Wave Equations

∂
∂

ρ ∂
∂

2

2

2

2

w z t

t
B

w z t

z

( , )
( / )

( , )
=

w z w e w ej z c j z c( , ) ( ) ( )/ /ω ω ωω ω= +−
1 2

w z t w t z c w t z c( , ) ( / ) ( / )= − + +1 2



Complex Numbers and Complex 
Arithmetic

Required to define roots of polynomials:

Required to define solutions of linear 
differential (difference) equations:
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Complex Addition and Subtraction
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Complex Conjugate

222*

*

AaaAA

ajaAA

ajaAA

ir

ira

ira

=+=⋅

⋅−=−∠≡

⋅+=∠=

φ

φ



Complex Multiplication
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Complex Division (Rationalization)
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Complex Number in Exponential Form

Euler’s formula: 
Complex number in exponential form: 
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Complex Signals

Signals represented as a pair of linked real-
valued signals: 
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Complex Numbers in the Complex Plane
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Complex Signals
Created from real-valued signals by operations such 
as 

Complex modulation/demodulation (aka quadrature
modulation)
Fourier transformation
Complex filtering
Baseband signal generation from memory

Advantages
Simplifies mathematical analysis
Reduce hardware data rates
Reduces arithmetic and filtering requirements for 

modulation/demodulation/phase adjustment



Advantage of Complex Representation: 
Modulation as an Example

[ ]

[ ] ( ) ( )[ ])()(cos)()(cos)()(
2
1)()(

)(cos)()(    ),(cos)()(

)()()()(

)()(    ,)()(

21212121

222111

)()(
2121

)(
22

)(
11

21

21

tttttatatxtx

ttatxttatx
or

etatatxtx

etatxetatx
tt

tt

θθθθ

θθ

θθ

θθ

++−⋅=⋅

⋅=⋅=

⋅=⋅

⋅=⋅=
+



Arbitrary Real Signal

Exponential argument is an arbitrary function 
of t

function envelop :)(       
signal analytic conjugate   signal analytic       
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Do Negative Frequencies Exist?



Continuous-Time Signals and Transforms



Continuous-Time System Response

Consider responses to the following inputs
Complex exponential signal
Complex sinusoidal signal
Modulated Gaussian signal
Impulse function (limit of Gaussian signals)
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)()()()(

)()()()()(

thtxtxth

dxthdtxhty

∗=∗=

−=−= ∫∫
∞

∞−

∞

∞−
ττττττ



Continuous-Time System Response to 
Complex Exponential

Motivation for Laplace transform

exists integral  where and limitsfor 
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Continuous-Time System Response to 
Complex Sinusoidal Signal

Motivation for Fourier Transform
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Fourier transform of the system temporal 
function is the system response function to 
input complex sinusoidal signals
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Gaussian Signals

Unmodulated Gaussian Signal (the transform 
is also Gaussian)
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Modulated Gaussian Signal (with complex 
sinusoid)
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Body Ultrasound Attenuation Filter
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Body Ultrasound Attenuation Filter
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Body Ultrasound Attenuation Filter

Assuming a Gaussian signal:
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Impulse Function

Introduced in 1947 by Dirac
Useful signal processing tool for

Sampling operations
Representing the transform of sinusoidal signals

Impulse is a brief intense unit-area pulse that 
exists conceptually at a point

1)( =∫
∞

∞−
dttδ



Impulse Function

Visualize as a limiting sequence of a window 
function, such as a Gaussian window
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Impulse Function

Properties
Product

Convolution

Convolution with an impulse results in a shift 
operation
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Continuous-Time System Response to 
Impulse Function

Thus, h(t) has the interpretation as the impulse 
response of the continuous-time system (filter).
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Fourier Transform and Properties



The Fourier Transform

Forward Fourier transform (generally 
complex-valued)

Reverse (backward) Fourier transform

Base Fourier transform from which all other 
Fourier transform variations are derived.
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The Fourier Transform
Distinguishing terminology

aka Continuous-Time, Continuous-Frequency Fourier 
Transform
aka Continuous-Time, Fourier Transform (CTFT) where 
“transform” conveys the idea of continuous-frequency 
(Fourier “series” conveys discrete-frequency)

Fourier transform amplitude and phase functions
Amplitude response, magnitude response, amplitude spectrum
Phase response, angle response, phase spectrum
Contrast these with temporal signal amplitude and phase 
functions



Even-Odd Signal Decomposition and 
Fourier Transform Properties

Any function can be separated into even and 
odd components:

Transform
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Even-Odd Signal Decomposition and 
Fourier Transform Properties
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Symmetry Properties of a Signal and 
its Fourier Transform



Symmetry Properties of a Signal and 
its Fourier Transform



Visualizing the System Response



The Logarithmic Scale

Definition of decibel (dB)

If P=V2/R
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Summary of Key CTFT Properties and 
Functions



Special Signals and Their Transforms

Cosine signal

Time-domain window function (aka
rectangular window)
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Special Signals and Their Transforms

Frequency-domain window function
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Sign Function

Will be useful to develop the Hilbert transform
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Impulse Train

Infinite periodic sequence of impulse functions 
spaced T seconds apart

Transform is another impulse train
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Impulse Train

Properties:
Product: In this case, the impulse train is called a 
sampling function.

Convolution: In this case, the impulse train is called 
a replicating function.
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Graphical Illustration of Sequence of 
Impulse Functions



Graphical Illustration of Sequence of 
Impulse Functions



Energy Preservation Between Domains

Parseval-Rayleigh theorem

Energy theorem (let x(t)=y(t))

Energy spectral density
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Matched Filter

Objective: Determine system (filter) response 
h(t) that maximizes the output energy of the 
system responses for the given input signal 
(assuming max is reached by time t=t0).

Based on Schwarz inequality
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Matched Filter

Resulting operation is an autocorrelation.
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Matched Filter and SNR

Assume the noise input to the filter (XN(f)) is 
uncorrelated with the filter and has frequency 
independent distribution as a function of 
frequency. We have

The output noise power becomes
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Matched Filter and SNR

When using the matched filter

The maximum signal-to-noise ratio is 
determined only by its total energy E, not by 
the detailed structure of the signal. 
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Time-Bandwidth Product

Approach using the area metric

Rule of thumb: bandwidth of the pulsed signal 
is roughly the reciprocal of the signal’s time 
duration.
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Time-Bandwidth Product

Approach using the variance metric

Equality when x(t) is Gaussian.
Other metrics may be required to handle special cases 
(e.g., bandpass signals with no content near DC).
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Range and Velocity Accuracy in 
Doppler Estimation

Let

With a matched filter, we have (the maximum 
occurs at t=0)

With noise, the maximum may shift to ∆t. Our 
goal is to derive < ∆t2 >

x t x t n t( ) ( ) ( )= +0
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Range and Velocity Accuracy in 
Doppler Estimation

Taylor expansion

We have
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Range and Velocity Accuracy in 
Doppler Estimation

Define a noise signal

We have
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Range and Velocity Accuracy in 
Doppler Estimation

Similarly

Thus

Gaussian signals give poorer simultaneous 
measurements of time and frequency than any 
other signal. 
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Essentially Time-Limited and Band-
Limited Signals

Signals cannot be simultaneously band-limited 
and time-limited.
Important for discrete-time applications that 
signal be band-limited (for sampling) and also 
for pulses to be time-limited (finite  memory)



Essentially Time-Limited and Band-
Limited Signals

Essentially time-limited

Essentially band-limited
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Analytic and Causal Signals

Causal and analytic signals are dual scenarios 
that link I/Q components through a Hilbert 
transform
Causal signal is a signal that is 0 over negative 
time.
Analytic signal is a complex signal with a 
transform that is 0 over negative frequency; 
created from a real signal.



Analytic and Causal Signals

Causal signal

Analytic signal
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Hilbert Transform

Transforms time time or frequency 
frequency
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Sampling and Windowing Operations



Frequency Definitions

Signal frequency
F (units of cycles per second, Hz)

Sampling rate
F=1/T, T is sampling interval in seconds (per sample)
Units of samples per second

Fraction of sampling rate
f/F=fT, dimensionless ratio (or cycles per sample)
Bounded by +/- 0.5 (normalized frequency)



Band-Limited Transform Definitions 
for Continuous-Time Signals

Baseband (lowpass) real 
signal

Real bandpass signal

Complex signal of one-
sided baseband real signal

Compex signal of one-
sided bandpass real signal

Baseband complex signal

f

f

f

f

f
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Creating One-Sided Complex Lowpass
Signals from Real Lowpass Signals

Analytic lowpass signal
Time-domain approach

Frequency-domain approach

Delay

HT FIlter

x(t) xr(t)

xi(t)

Zero out -fx(t) {xr(t), xi(t)}IFTFT



Creating Baseband Complex Signals 
from Real Bandpass Signal
Complex demodulation (quadratic demodulation)

Original

Band-shift

Low pass filter

Implementation



Four Basic Sampling and Windowing 
Operations Linking CT and DT Signals

Time sampling:
Creates discrete-time signal (i.e., a time series)

Frequency windowing:
Creates frequency-limited (i.e., band-limited) signal

Frequency sampling:
Creates discrete frequency transform (i.e., a Fourier 
series)

Time windowing:
Creates time-limited signal



Time Sampling Operation

Band-limited requirement

Time sampling operation

Graphical Depiction



Selecting the Sampling Rate

Real baseband case
Complex baseband case
Real bandpass case



Sampling Real Baseband Signals

Case 1

Case 2

Case 3

B
T

2
1

>

B
T

2
1

<

B
T

2
1

=

∑∑
∞

−∞=

∞

−∞=

−⇔−=⋅=
k

BL
n

BLBLTS kFfXnTtnTxTTStxtx )()()()()( δ



Strictly Band-Limited Signals Do Not 
Exist in Practice

Some degree of aliasing cannot be avoided in actual hardware
Analog anti-aliasing filters are imperfect
Analog-to-digital converters introduce digitization noise

Select sample rate based on bandwidth at which the signal is 
essentially band-limited.



Sampling Complex Baseband Signals

Signal and transform

Case 1

Case 2

Minimum sampling rate for complex baseband signal: F=B.
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Sampling Real Bandpass Signals

Depending on relationship between F and B, 
can actually select sampling rate as low as 
F=2B (baseband sampling theorem).
Demodulation is free!!!
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Sampling Real Bandpass Signals

The above discussion is only valid for narrow 
band applications (fractional bandwidth is 40% 
when m=1).



Frequency Windowing Operation

Reconstruction of band-limited CT signal from DT 
signal
Signal and transform

Define frequency windowing operation (ideal low 
pass filter)



Frequency Windowing Operation

Recover original transform by

Symbolic expression of the temporal sampling 
theorem
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Frequency Sampling Operation
Dual to time sampling operation
Assume continuous-time signal is time-limited, rather than 
band-limited

Criteria to avoid temporal aliasing
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Frequency Sampling Operation
Frequency sampling operation



Time Windowing Operation

Signal and transform

Define one-sided time windowing operation



Time Windowing Operation

Recovering original time signal

Symbolic expression of frequency-domain 
sampling theorem
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Discrete-Time Signals and 
Transforms



Questions: How many Fourier 
Transforms?

Fast Fourier Transform (FFT)
Discrete-Time Fourier Transform (DTFT)
Continuous-Time Fourier Series (CTFS)
Continuous-Time Fourier Transform (CTFT)
Discrete Fourier Transform (DFT)
Fourier Series (FS)
Discrete-Time Fourier Series (DTFS)



Answer: Just One!!!

Fundamental: Continuous-Time Fourier 
Transform (CTFT)
All other Fourier-Based transforms are 
derivable from the CTFT under specific signal 
conditions



Signal and Transform Relationships Using 
Both Time Sampling and Frequency Sampling

General operations
Time limiting/Band limiting
Interpolation
Sampling
Replicating to create periodicity



Signal and Transform Relationships Using 
Both Time Sampling and Frequency Sampling

Special case of four operations for scenario to 
derive DTFS (aka DFT)



Four FTs through Sampling and Windowing



Graphical Representation of the Four 
Steps: CTFT DTFT DTFS
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Continuous-Time Fourier Transform

Transforms

Energy preservation theorem

Convolution theorem
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Discrete-Time Fourier Transform

Operations

Symbolic



Discrete-Time Fourier Transform

Transforms

Energy preservation theorem

Convolution theorem
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Periodic Convolution
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Some Discrete-Time Fourier 
Transform Properties

Transform of most interest in our case
Can be computed at uniform frequency 
spacings for time-limited signals using the 
DTFS (aka DFT)
Maintains CTFT even-odd properties and real-
imaginary properties
Time shift
Frequency shift
One-sided rectangular window


