
Chapter 6: Real-Time Image 
Formation 
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Generic Ultrasonic Imaging System

• Transmitter:
– Arbitrary waveform.
– Programmable transmit voltage.
– Arbitrary firing sequence.
– Programmable apodization, delay control and 

frequency control.
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Transmit Waveform
• Characteristics of transmit waveforms.
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Generic Ultrasonic Imaging System

• Receiver:
– Programmable apodization, delay control and 

frequency control.
– Arbitrary receive direction. 

• Image processing:
– Pre-detection filtering.
– Post-detection filtering.

• Full gain correction: TGC, analog and digital.
• Scan converter: various scan format.



Generic Receiver
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Pre-detection Filtering
• Pulse shaping. (Z)
• Temporal filtering. (t)
• Beam shaping. (X’)

– Selection of frequency range. (Z X’)

– Correction of focusing errors. (X X’)
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Pulse-echo effective apertures
• The pulse-echo beam pattern is the multiplication of the 

transmit beam and the receive beam
• The pulse-echo effective aperture is the convolution of 

transmit and receive apertures
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Post-Detection Filtering

• Data re-sampling (Acoustic Display).
• Speckle reduction (incoherent averaging).
• Feature enhancement.
• Aesthetics.
• Post-processing:

– Re-mapping (gray scale and color).
– Digital gain.



Envelope Detection

• Demodulation based:
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Envelope Detection

• Hilbert Transform
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Beam Former Design



Implementaiton of Beam Formation

• Delay is simply based on geometry.
• Weighting (a.k.a. apodization) strongly 

depends on the specific approach. 



Beam Formation - Delay

• Delay is based on geometry. For simplicity, a 
constant sound velocity and straight line 
propagation are assumed. Multiple reflection is 
also ignored.

• In diagnostic ultrasound, we are almost always 
in the near field. Therefore, range focusing is 
necessary.



Beam Formation - Delay

• Near field / far field crossover occurs when 
f#=aperture size/wavelength.

• The crossover also corresponds to the point 
where the phase error across the aperture 
becomes significant (destructive).
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Phased Array Imaging
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Dynamic Focusing

• Dynamic-focusing obtains better image 
quality but implementation is more 
complicated.

Fix

Dynamic
Delay

R



Focusing Architecture
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Delay Pattern
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Missing Samples
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Beam Formation 
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Beam Formation - Delay

• The sampling frequency for fine focusing 
quality needs to be over 32*f0(>> Nyquist).

• Interpolation is essential in a digital system 
and can be done in RF, IF or BB.
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Delay Quantization

• The delay quantization error can be 
viewed as the phase error of the phasors.
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Delay Quantization
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• N=128, 16 quantization steps per cycles are required.
• In general, 32 and 64 times the center frequency is used.



Beam Formation - Delay

element i ADC interpolation digital delay sum
m

atio n

• RF beamformer requires either a clock well 
over 100MHz, or a large number of real-time 
computations.

• BB beamformer processes data at a low clock 
frequency at the price of complex signal 
processing.



Beam Formation - RF

• Interpolation by 2:
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Beam Formation - RF

• General filtering architecture (interpolation by m):
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Autonomous Delay Control
Autonomous vs. Centralized
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Beam Formation - BB
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Beam Formation - BB
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Beam Formation - BB
element i A DC demod/

LPF
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Beam Formation - BB
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• The coarse time delay is applied at a low clock frequency, the 
fine phase needs to be rotated accurately (e.g., by CORDIC).



∆Σ-Based Beamformers



Why ∆Σ ?

• High Delay Resolution -- 32 f0 (requires 
interpolation)

• Multi-Bit Bus 

Current ProblemsCurrent Problems

• High Sampling Rate -- No Interpolation 
Required

• Single-Bit Bus -- Suitable for Beamformers 
with Large Channel-Count 

∆Σ∆Σ AdvantagesAdvantages



Conventional vs. ∆Σ



Advantages of Over-Sampling

• Noise averaging.
• For every doubling of the sampling rate, 

it is equivalent to an additional 0.5 bit 
quantization.

• Less requirements for delay interpolation.
• Conventional A/D not ideal for single-bit 

applications.



Advantages of ∆Σ Beamformers

• Noise shaping.
• Single-bit vs. multi-bits.
• Simple delay circuitry.
• Integration with A/D and signal processing.
• For hand-held or large channel count devices.



Block-Diagram of the ∆Σ Modulator
Quantizer
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• Over-Sampling 
• Noise-Shaping

• Reconstruction

• The SNR of a 32 f0, 2nd-order, low-
passed ∆Σ modulator is about 40dB.



Noise Shaped ∆Σ Modulator



Signal and Noise Transfer 
Function



Noise Shaping Transfer Functions
• For first order noise shaping, 1.5 bits (9 dB) is 

gained when the sampling frequency is doubles.
• For second order noise shaping, 2.5 bits (15 dB) is 

gained when the sampling frequency is doubles.



Property of a ∆Σ Modulator
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A Delta-Sigma Beamformer
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∆Σ A/D

• No Interpolation
• Single-Bit Bus
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Cross-Section-Views of Peak 3
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Scan Conversion

• Acquired data may not be on the display 
grid.

Acquired grid

Display grid



Scan Conversion
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Scan Conversion
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Moiré Pattern



Scan Conversion
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Temporal Resolution (Frame Rate)

• Frame rate=1/Frame time.
• Frame time=number of lines * line time.
• Line time=(2*maximum depth)/sound 

velocity.
• Sound velocity is around 1540 m/s.
• High frame rate is required for real-time 

imaging.



Temporal Resolution

• Display standard: NTSC: 30 Hz. PAL: 25 
Hz (2:1 interlace). 24 Hz for movie.

• The actual acoustic frame rate may be 
higher or lower. But should be high 
enough to have minimal flickering.

• Essence of real-time imaging: direct 
interaction. 



Temporal Resolution

• For an actual frame rate lower than 30 Hz, 
interpolation is used.

• For an actual frame rate higher than 30 Hz, 
information can be displayed during playback.

• Even at 30 Hz, it is still possibly 
undersampling.



Temporal Resolution

• B-mode vs. Doppler.
• Acoustic power: peak vs. average.
• Increasing frame rate:

– Smaller depth and width.
– Less flow samples.
– Wider beam width.
– Parallel beam formation.



Parallel Beamformation
• Simultaneously receive multiple beams.
• Correlation between beams, spatial ambiguity.
• Require duplicate hardware (higher cost) or time 

sharing (reduced processing time and axial 
resolution).
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Parallel Beamformation

• Simultaneously transmit multiple beams.
• Interference between beams, spatial 

ambiguity.

t1/r1 t2/r2

t1/r1
t2/r2
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