Chapter 6: Real-Time Image
Formation



- --—-=-=-- I high
: digital transmit : Volta.lge
: beamformer I DAC |—| amplifier
l i
I i :
system I beamformer( | T/R =
keyboard control i control ! switch[™ &
| |
: I i
- r - =T == -.I \ i v
I B, M, :I digital receive ; variable
:11  Doppler N beamformer || ADC gain
1 image (! i
display [« - -
=°| processing | \ :
2 |
¥ p— v—— —l Doppler
: processing
EssssssssssssEEEmssEEEEEEEEEEE 'f ..................... =

All digital

Apoq



Generic Ultrasonic Imaging System

e Transmitter:
— Arbitrary waveform.
— Programmable transmit voltage.
— Arbitrary firing sequence.

— Programmable apodization, delay control and
frequency control.

Digital Waveiorm D/A PPl HV Amp [~] Transducer Array [~

Generator ‘ ‘ ‘

Control







Transmit Wavetform

e (Characteristics of transmit waveforms.
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Generic Ultrasonic Imaging System

e Recelver:

— Programmable apodization, delay control and
frequency control.

— Arbitrary receive direction.
e Image processing:
— Pre-detection filtering.
— Post-detection filtering.
e Full gain correction: TGC, analog and digital.

e Scan converter: various scan format.
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Pre-detection Filtering




Pre-detection Filtering

* Pulse shaping. (£)

e Temporal filtering. (1)

* Beam shaping. (X')

— Selection of frequency range. (Z=2X’)
B( X,z)ij(x’,z Q)R(X ,Z qg)A(w)aw

— Correction of focusing errors. (X2 X')
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Pulse-echo effective apertures

*  The pulse-echo beam pattern 1s the multiplication of the
transmit beam and the receive beam

*  The pulse-echo effective aperture 1s the convolution of
transmit and receive apertures

For C.W. jkxz[l 1 j
C(x)=|C(x)|e




Post-Detection Filtering

Data re-sampling (Acoustic = Display).
Speckle reduction (incoherent averaging).
Feature enhancement.

Aesthetics.

Post-processing:
— Re-mapping (gray scale and color).
— Digital gain.



Envelope Detection

e Demodulation based:
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Envelope Detection

 Hilbert Transform
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Beam Former Design



Implementaiton of Beam Formation

* Delay 1s simply based on geometry.

* Weighting (a.k.a. apodization) strongly
depends on the specific approach.



Beam Formation - Delay

* Delay 1s based on geometry. For simplicity, a
constant sound velocity and straight line
propagation are assumed. Multiple reflection 1s
also 1gnored.

* In diagnostic ultrasound, we are almost always
in the near field. Therefore, range focusing 1s
necessary.



Beam Formation - Delay

 Near field / far field crossover occurs when
t,=aperture size/wavelength.

* The crossover also corresponds to the point
where the phase error across the aperture
becomes significant (destructive).
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Phased Array Imaging
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Dynamic Focusing

* Dynamic-focusing obtains better image
quality but implementation 1s more
complicated.
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Focusing Architecture

1 delay line
. delay controller .

UOTJBUILUNS

W\ delay line

transducer array



Delay Pattern

* Delays are quantized by sampling-period
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Beam Formation
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Beam Formation - Delay

e The sampling frequency for fine focusing
quality needs to be over 32*{,(>> Nyquist).

 Interpolation is essential 1n a digital system
and can be done in RF, IF or BB.
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Delay Quantization

* The delay quantization error can be
viewed as the phase error of the phasors.
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Delay Quantization
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« N=128, 16 quantization steps per cycles are required.

* In general, 32 and 64 times the center frequency 1s used.



Beam Formation - Delay

element 1 —D[>ﬂ ADC interpolation — digital delay —
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 RF beamformer requires either a clock well
over 1I00MHz, or a large number of real-time
computations.

* BB beamformer processes data at a low clock
frequency at the price of complex signal
processing.



Beam Formation - RF

* Interpolation by 2:
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Beam Formation - RF

* General filtering architecture (interpolation by m):
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Autonomous Delay Control

Autonomous vs. Centralized
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Beam Formation - BB
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Beam Formation - BB
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Beam Formation - BB

1 :
element i —»D—+ ADC » demod/ »  time delay/

LPF »| phase rotation
Q

/
N
.

N

Bal‘ %:A( -7 gﬂym Q‘z‘—r)—éZﬂafr

NA( 7, +17', s Y —f B
O(l‘%:z ( / /gﬂﬂ'A (-7, ,)éﬁ‘fd(,@)



Beam Formation - BB
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 The coarse time delay 1s applied at a low clock frequency, the
fine phase needs to be rotated accurately (e.g., by CORDIC).



AY-Based Beamformers




Why AX ?

Current Problems
 High Delay Resolution -- 32 f, (requires
interpolation)

e Multi-Bit Bus

A> Advantages
* High Sampling Rate -- No Interpolation

Required

* Single-Bit Bus -- Suitable for Beamformers
with Large Channel-Count




Conventional vs. AX
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Advantages of Over-Sampling

Noise averaging.

For every doubling of the sampling rate,
it 1s equivalent to an additional 0.5 bit
quantization.

Less requirements for delay interpolation.

Conventional A/D not 1deal for single-bit
applications.



Advantages of AX Beamformers

e Noise shaping.

* Single-bit vs. multi-bits.

* Simple delay circuitry.

 Integration with A/D and signal processing.

* For hand-held or large channel count devices.



Block-Diagram of the AX Modulator
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* Noise-Shaping

* The SNR of a 32 f,, 2nd-order, low-
passed AX modulator is about 40dB.



Noise Shaped AX Modulator
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Signal and Noise Transfer
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Noise Shaping Transfer Functions

 For first order noise shaping, 1.5 bits (9 dB) 1s
gained when the sampling frequency is doubles.

* For second order noise shaping, 2.5 bits (15 dB) 1s
gained when the sampling frequency 1s doubles.




Property of a AX Modulator

Waveform Spectrum
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A Delta-Sigma Beamformer

Transducer b
Transducer b

* No Interpolation
* Single-Bit Bus
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Cross-Section-Views of Peak 3
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Scan Conversion

* Acquired data may not be on the display
orid.
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Scan Conversion
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Moiré Pattern
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Temporal Resolution (Frame Rate)

e Frame rate=1/Frame time.
 Frame time=number of lines * line time.

e Line time=(2*maximum depth)/sound
velocity.

* Sound velocity i1s around 1540 m/s.

* High frame rate 1s required for real-time
Imaging.



Temporal Resolution

* Display standard: NTSC: 30 Hz. PAL: 25
Hz (2:1 interlace). 24 Hz for movie.

» The actual acoustic frame rate may be
higher or lower. But should be high
enough to have minimal flickering.

* Essence of real-time 1imaging: direct
interaction.



Temporal Resolution

 For an actual frame rate lower than 30 Hz,
interpolation 1s used.

* For an actual frame rate higher than 30 Hz,
information can be displayed during playback.

* Even at 30 Hz, it 1s still possibly
undersampling.



Temporal Resolution

* B-mode vs. Doppler.
* Acoustic power: peak vs. average.

 Increasing frame rate:
— Smaller depth and width.
— Less flow samples.
— Wider beam width.

— Parallel beam formation.



Parallel Beamformation

Simultaneously receive multiple beams.
Correlation between beams, spatial ambiguity.

Require duplicate hardware (higher cost) or time
sharing (reduced processing time and axial
resolution).
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Parallel Beamformation

* Simultaneously transmit multiple beams.

* Interference between beams, spatial

ambiguity.
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