Chapter 9 : Doppler Ambiguity Function
Limitations of Doppler Ultrasound

In principle, aliasing only occurs in PW and Color Doppler, in which signals are
effectively sampled at an interval of PRI. In a digital system, however, aliasing is
also present in CW. The is because the sampling frequency of the digitizer limits
the maximum frequency that can be detected without aliasing based on the
Nyquist criterion. Therefore, the maximum un-aliased velocity is also limited.
Generally, the sampling frequency of the digitizer is chosen such that the

maximum detectable velocity is higher than that of most physiological flows.

In PW Doppler and Color Doppler, the maximum velocity (v_ ) that can be

max

detected without aliasing is
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where A is the wavelength. On the other hand, the maximum range of the

Doppler gate for a given PRI is
r <€ (PRI
max 2

where ¢ is the sound velocity in the body. Therefore,

b

In other words, there exists a tradeoff between the maximum velocity that can be
detected without aliasing and the maximum depth of the Doppler gate. In practice,
a lower Doppler frequency is often preferred since it allows detection of higher
blood velocities and deeper flows. In addition, lower frequencies have lower
attenuation and hence they can penetrate deeper (assuming the increase in

backscattered signal does not exceed the increase in attenuation).

Blood flows detected by Doppler instruments always appear as a range of

frequencies, instead of a single frequency. One of the main reasons is that blood
moves at a variety of velocities throughout the vessel. Therefore, flows within a
sample volume have various Doppler shifts and the spectral width is broadened.

The amount of spectral broadening depends on the nature of the blood flow and
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can vary under different physiological conditions.

® There is a physical limitation in all Doppler measurements which also causes
spectral broadening. This limitation is due to the transit time required for red
blood cells to propagate through the Doppler gate. In other words, since the blood
cells are moving quickly through the Doppler gate, the Doppler instrument only
has a certain amount of time to estimate the Doppler shifts corresponding to the
moving blood cells. To increase the frequency resolution, the transit time needs to
be increased and this decreases the time (range) resolution. This uncertainty
relation is a well known physical property (Heisenberg's Uncertainty Principle)
which states that the position and the velocity cannot be accurately estimated
simultaneously. Since the Doppler gate is always limited, this type of spectral
broadening is inevitable. Note that the size of the Doppler gate is also limited in
CW, since the Doppler gate can be defined as the intersection of the CW beam

and the vessel.
® Since the transit time is determined by the size of the Doppler gate and the blood
velocity, it is obvious that the amount of spectral broadening increases for flows

with higher velocities (i.e., shorter transit times).

® Consider two Doppler gates with different sizes, the effects of spectral

broadening can be illustrated by the following two spectra:

bigger Doppler gate smaller Doppler gate

broadening due to broadening due to
transit time = T~ m m‘/ transit time

physiological physiological

® To reduce the spectral broadening resulting from the transit time, the size of the
Doppler gate (i.e., the pulse length and the beam width) may be increased to
reduce the spectral width such that errors of the maximum and minimum velocity

measurements can be decreased.
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II.

Matched Filtering

Based on the uncertainty principle, an important character of Doppler
measurement is that the range and the Doppler shift cannot be measured
accurately at the same time. In this section, we will show that the accuracy can be
improved with signal-to-noise ratio (SNR) in both cases, although the
fundamental tradeoff between these two resolutions still exists. Specifically, we
will introduce a linear filter that maximizes the SNR. This filter is generally
known as the matched filter.

For a given input signal x(¢) and a filter A(¢), the filter output y () can be

found by the following convolution integral in the time domain or the following

multiplication in the frequency domain

Y (0 =x(O0(D= [ x(T) (1= Tyt
Y(£)=X(HH (L)

Note that X (), H(f) and Y (/) are the Fourier transforms of x(7),
h(t) and y(t), respectively.

Define the SNR as the following

eak instantaneous output signal power
op=D put signal p

2

output noise power

the goal is to determine the optimal form of the filter /(#), such that the SNR is

maximized.

Suppose the filter output y (/) is maximized at the time 7 =7, we have
y(T,) =I_WX(TQ, -T)A(T)dr.

If we assume the noise input to the filter (denoted by X, (/")) is uncorrelated
with the filter and has frequency independent distribution as a function of

frequency (i.e., <|X v (£ )|2> = NV,), the total noise output power (0 ?) becomes
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0’ = <J’_Z|XN (f)H(f)|2a’f> :Nofm|H(f)|2df.
Using the Parseval's theorem, we have

- 2
o’ = Nof A dr.

® The goal of matched filtering is to maximize y*(7,)/0°. By using the

Schwarz's inequality, we have

2

[x@-nnmal o -naf ¥ o
<= —= .

SNR = _ .
N[ & (e N[ 4o (e

The SNR 1s maximized if

o) =ax(T, - 1),

where a is a constant.

The filter given by the above equation is known as a matched filter. Its response is

a time-delayed version of the time-reversed input signal and it gives a maximum
SNR of

) _ )
P =I_wx (T, —t)dr =I_wx (t)dt Ei_
max NO NO NO

In other words, the maximum signal-to-noise ratio is determined only by its total

energy £, not by the detailed structure of the signal.

For a complex signal, a matched filter can also be found using the same approach.

The matched filter for complex signals generally has the following form

h(t)=ax"(T, -1),

where [Jrepresents the complex conjugate.

II1. Range and Velocity Accuracy
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® The received signal is usually corrupted by noise, and this decreases the accuracy
of both the range and the frequency resolutions in Doppler ultrasound. It can be
shown that the resolution depends directly on the SNR, and therefore the optimal

resolution is obtained by using a matched filter.

® et the total input (x(7)) be the sum of a noise-free signal (x, (7)) and a noise

signal (n(¢)), 1.e.,
x(t)=x,(t)+n(t).

Using a matched filter /() = x, (—¢), the maximum output occurs at 7 =0

and
y(z‘)waXo(T)Xo(T—[)a’T +J':11(T Y, (T —t)d Eyo([)+fmn(r Y, @ —0)d .

Keep in mind that the noise-free output y, (#) has its maximum at y, (0).

Suppose the estimated value of the time when y, (#) is maximized has an error

of At, our goal is to derive its mean square error, i.e., <A[2> )

® Using a Taylor expansion, we have

_ Ar
yO(Af) _YQ(O)+T}/0(O)+R9

where R is the remainder. Note that y'(0)=0 since y,(7) has it maximum at
t =0.Bydefining y,(0)= I_w on (T)dt = E (the total energy of the signal),

the above equation can be re-written as (keeping only up to the second order

term)
v, (A= 3, (0)+DL2yI (0)E+R.

® y/(0) isrelated to the frequency bandwidth of x, (/) and it can be shown as

the following. Since

V=[x (T =0x (T,
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thus
Y5 (0) :fmx{)'(r)xo(r)a’r = —4nzfmf2X0(f)XOD(f)a’f.

Defining a quantity [ as follows:

, 4TC [ £2X, (5 X, (Hdf _ 4T [ £OX, ()X, (Hdf

B

3

[LX (X, (r)dr £

we have
7 (0)=-BE
and
Yo (D)= y;(0) = =B E*Ar’.
® Define a noise signal as the following

<€2> = <y§ (0)=y2 (A[)> E<J':‘H(T)Xo (T)‘le'>,

the following equation can be obtained by using the Parseval's theorem and by

assuming that the noise is un-correlated with the signal. We have

(e2)= N, E =B E*(Dr?).

Therefore,
(ar)=—1
B (EIN,)

and it is clear that as the SNR improves (optimal SNR can be obtained with a
matched filter), the time error decreases.

® [t can be shown by methods very similar to the above derivation that the mean

square error in the frequency measurement is

_ 1
<Af2>_—a2(E/No)’

where o is defined as
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Thus we find that the accuracy of the frequency measurement can also be

optimized by matched filtering.

Combining the equation for both the time and the frequency measurement errors,

we have

[<A“2><Af2>]m - a,B(El/NO)'

From the above equation, we find that the accuracy of both the time and the

frequency measurements can be improved simultaneously by improving the SNR
and by increasing the time-bandwidth product (i.e., af). For a given system,

however, the fundamental tradeoff between those two still remains.

By using Schwarz's inequality, it can be found that af3 is always larger than a
constant, and the minimum occurs when Azx, (¢) = —x; (¢) with A being a
constant. Since a Gaussian signal satisfies the above relation, we find that
Gaussian signals give poorer simultaneous measurements of time and frequency

than any other signal.

Doppler Ambiguity Function

For a given input signal, we have shown that matched filtering provides optimal
range and Doppler shift resolution. Another important task when designing a
Doppler instrument is, based on specific requirements, to choose a waveform for

the least amount of ambiguity after the matched filtering process. To do this, it is

convenient to define the following function
X(BL,AF) = [ u(T)ullT= Anye™™ dt

where #(T) is the analytic signal of a real signal x(7) and

x(T)=(u(T)+uldT))/2.

92



® The ambiguity function is defined as | X(At,Af)|2 and its utility can be seen by

examining its properties. Let A/ =0,

2

X (B2,0) =‘fwu(r)uE[T— Ar)dr

The ambiguity function in this case is simply the squared magnitude of the
autocorrelation function of the received signal. Obviously the ambiguity function
along this axis describes the axial (range) resolution, since the range resolution is

determined by the temporal duration of the received signal.

® Similarly, we can examine the ambiguity function along the A/ axis by setting
Ar =0. We have

‘X(O,Af)‘z :Uioll(r)u[(r)@ﬂnﬂfd[r: ‘Iio‘u(l' )‘2€jzszd_‘2'

Therefore, the ambiguity function along the A/ axis is simply the power
spectrum of the squared envelope of the received signal. Clearly the broader the
bandwidth of the signal, the more difficult it is to resolve the presence of two

Doppler shifts from objects with different velocities.

® Using the Parseval's theorem, the following relation can be obtained
II_m‘x(Af,Af)\ d (At)d (AF) =|x(0,0)] .

In other words, the total potential ambiguity is the same for all signals that posses
the same energy (which is proportional to | X (0,0)| ). This property is closely

related to the uncertainty principles that we previously derived. The goal of
designing a Doppler instrument is to distribute the ambiguity in a optimal way

based on particular requirements.

® Ideally, the ambiguity function should consist of a single peak with infinitesimal

width at the origin and zero elsewhere, i.e.,

X(ATADP

Af
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Obviously, such a function is impossible to achieve. A reasonable approximation
of the ideal ambiguity function is shown below. In this case, there is no
ambiguity since there is only one peak. The accuracy, however, is still
determined by the width of the peak and may or may not satisfy the design

requirements.

X(ATAD
Af

At

® The ambiguity function for a simple rectangular pulse appears as the square of a
triangular function along the A axis and as the square of a sinc function along

the A/ axis. This is conceptually shown in the following.

X(AL0)} X(0,40)

A, b

> At > Af

® Since the total volume under the ambiguity function is fixed for a given input
energy, the width of peak at the origin may be decreased at the price of peaks
being formed at regions other than the peak at the origin. These peaks give rise to
ambiguities. Therefore, the requirement for accuracy and ambiguity may not
always be possible to satisfy at the same time, i.e., another fundamental tradeoff

exists in Doppler ultrasound.
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