Chapter 6: Real-Time Image
Formation
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Generic Ultrasonic Imaging
System

 Transmitter:

— Arbitrary waveform.
— Programmable transmit voltage.

— Arbitrary firing sequence.

— Programmable apodization, delay control and

frequency control.
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Transmit Wavetorm

 Characteristics of transmit waveforms.
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Generic Ultrasonic Imaging
System

Recerver:

— Programmable apodization, delay control and
frequency control.

— Arbitrary receive direction.

Image processing:

— Pre-detection filtering.

— Post-detection filtering.

Full gain correction: TGC, analog and digital.

Scan converter: various scan format.
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Pre-detection Filtering




Pre-detection Filtering

e Pulse shaping. (Z)
e Temporal filtering. (t)
e Beam shaping. (X')

— Selection of frequency range. (Z=>X')
B(x',Zz) =fT(x’,z,oo)R(x’,z,m)A(m)do

— Correction of focusing errors. (X=>X')
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Pulse-echo effective apertures

The pulse-echo beam pattern 1s the multiplication of the
transmit beam and the receive beam

The pulse-echo effective aperture 1s the convolution of
transmit and receive apertures
For C.W. ]kx2( 1 1 \

C(x)=|C(x)|e °




Post-Detection Filtering

Data re-sampling (Acoustic = Display).
Speckle reduction (incoherent averaging).
Feature enhancement.

Aesthetics.

Post-processing:
— Re-mapping (gray scale and color).
— Digital gain.



Envelope Detection

e Demodulation based:

S(t) = A(t)cos2nf,t - Re{c\(t)ef?“”o’}

A(t) = LPF{S(t)cos2nrf, }

| rf signal

_-J\} J\ ......




Envelope Detection

e Hilbert Transform

S(t)+ ] ><H.T.{S(t)}= DA(t)e"
D(1) = abs(S(t)+ jxH.T {S(1)}) 2
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Beam Former Design



Implementaiton of Beam Formation

* Delay 1s simply based on geometry.

* Weighting (a.k.a. apodization) strongly
depends on the specific approach.



Beam Formation - Delay

* Delay 1s based on geometry. For simplicity, a
constant sound velocity and straight line
propagation are assumed. Multiple reflection
1s also 1gnored.

* In diagnostic ultrasound, we are almost always
in the near field. Therefore, range focusing 1s
necessary.




Beam Formation - Delay

 Near field / far field crossover occurs when
t,=aperture size/wavelength.

* The crossover also corresponds to the point
where the phase error across the aperture
becomes significant (destructive).
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Phased Array Imaging

Tx
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Dynamic Focusing

* Dynamic-focusing obtains better image
quality but implementation 1s more
complicated.
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Focusing Architecture
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Delay Pattern

* Delays are quantized by sampling-period
..
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Beam Formation

input
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Beam Formation - Delay

* The sampling frequency for fine focusing
quality needs to be over 32*{,(>>
Nyquist).

 Interpolation 1s essential 1n a digital system
and can be done 1n IA{eF, [F ,Or BB.

At = <
2nf, 32f,

2 /32~11.25°



Delay Quantization

» The delay quantization error can be
viewed as the phase error of the
phasors.
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Delay Quantization
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« N=128, 16 quantization steps per cycles are required.

* In general, 32 and 64 times the center frequency is
used.



Beam Formation - Delay

element 1 -D{>— ADC interpolation — digital delay ——
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* RF beamformer requires either a clock well
over 100MHz, or a large number of real-time
computations.

* BB beamformer processes data at a low clock
frequency at the price of complex signal
processing.



Beam Formation - RF

* Interpolation by 2:
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Beam Formation - RF

* General filtering architecture (interpolation by m):

Delay -
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Autonomous Delay Control

Autonomous vs. Centralized

A=n,+1-¢
An=1
=1
An=An+1 [N bump
- : “ A=A+An+n,

n, n, 1=+l




Beam Formation - BB
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Beam Formation - BB

| = LFF{A(t -t )cos2nf, (t -t )cos2nf,t }

_ LPF{A(tz g (OOS2JT (fo=f )(t-T)-Fft)+cos2e ((fy+F,)(t-T)+ fd'c))}
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Beam Formation - BB
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Beam Formation - BB

element 1 —PD—*

Res d

ADC demod/ time delay/
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» The coarse time delay 1s applied at a low clock frequency, the
fine phase needs to be rotated accurately (e.g., by CORDIC).



AX-Based Beamformers




Why A2 ?

Current Problems
« High Delay Resolution -- 32 f,, (requires
interpolation)
* Multi-Bit Bus

A2 Advantages
* High Sampling Rate -- No Interpolation
Required

* Single-Bit Bus -- Suitable for Beamformers
with Large Channel-Count



Conventional vs. AX
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Advantages of Over-Sampling

Noise averaging.

For every doubling of the sampling rate,
it 1s equivalent to an additional 0.5 bit
quantization.

Less requirements for delay interpolation.

Conventional A/D not 1deal for single-bit
applications.



Advantages of AX Beamformers

* Noise shaping.

* Single-bit vs. multi-bits.

* Simple delay circuitry.

 Integration with A/D and signal processing.

* For hand-held or large channel count devices.



Block-Diagram of the AX Modulator
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* Over-Sampling  Reconstruction

* Noise-Shaping

* The SNR of a 32 {,,, 2nd-order, low-
passed AX modulator is about 40dB.



Noise Shaped AX Modulator




Signal and Noise Transfer
Y(z)  H(z)
U(z) 1+ H(z)
iz) l
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Noise Shaping Transfer Functions

* For first order noise shaping, 1.5 bits (9 dB) 1s
gained when the sampling frequency 1s doubles.

* For second order noise shaping, 2.5 bits (15 dB) 1s
gained when the sampling frequency 1s doubles.




Property of a AX Modulator

Wavetorm Spectrum
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A Delta-S1igma Beamformer
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* No Interpolation
* Single-Bit Bus
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Cross-Section-Views of Peak 3
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Scan Conversion

* Acquired data may not be on the display
orid.

2 - - - Acquired grid

7 \ - — Display grid




Scan Conversion
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Scan Conversion

--------------------- Original grid
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Moiré Pattern
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Temporal Resolution (Frame Rate)

e Frame rate=1/Frame time.
e Frame time=number of lines * line time.

e Line time=(2*maximum depth)/sound
velocity.

* Sound velocity 1s around 1540 m/s.

* High frame rate 1s required for real-time
Imaging.



Temporal Resolution

* Display standard: NTSC: 30 Hz. PAL: 25
Hz (2:1 mterlace). 24 Hz for movie.

» The actual acoustic frame rate may be
higher or lower. But should be high
enough to have minimal flickering.

* Essence of real-time 1imaging: direct
interaction.



Temporal Resolution

* For an actual frame rate lower than 30 Hz,
interpolation 1s used.

* For an actual frame rate higher than 30 Hz,
information can be displayed during playback.

* Even at 30 Hz, 1t 1s still possibly
undersampling.



Temporal Resolution

* B-mode vs. Doppler.
* Acoustic power: peak vs. average.

* Increasing frame rate:
— Smaller depth and width.
— Less flow samples.
— Wider beam width.

— Parallel beam formation.



Parallel Beamformation

Simultaneously receive multiple beams.
Correlation between beams, spatial ambiguity.

Require duplicate hardware (higher cost) or time
sharing (reduced processing time and axial

resolution).
|

t

. .
K e
. -
* -
* -
0 C
0 .
D
D

il ¢ %) rl 12




Parallel Beamformation

* Simultaneously transmit multiple beams.

 Interference between beams, spatial

ambiguity.
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Term Report

* “The Applications of K-Space in Pulse-
Echo Ultrasound”, W.F. Walker and G.E.
Trahey, IEEE Trans. on UFFC, vol. 45-3,

pp. 541-558, 1998.



