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Tissue Harmonic Image Analysis Based on

Spatial Covariance
Che-Chou Shen and Pai-Chi Li, Senior Member, IEEE

Abpstract—The van Cittert-Zernike theorem has been
widely used to describe spatial covariance of the pres-
sure field backscattered from a speckle object. Spatial co-
variance contains important information in the context
of correlation-based correction of sound velocity inhomo-
geneities, Previous work was primarily based on spatial co-
variance analysis for linear imaging. In this paper, we ex-
tend the analysis to tissue harmonic imaging. Specifically,
we investigate effects of the signal-to-noise ratio (SNR) and
sound velocity inhomogeneities on spatial covariance. Re-
sults from tissue harmonic imaging are also compared with
those from linear imaging. Both simulations and experi-
ments are performed. At high SNRs, although both lin-
ear imaging and tissue harmonic imaging have spatial co-
variance functions close to theory, the spatial covariance of
tissue harmonic imaging is consistently lower than that of
linear imaging regardless of the presence of sound velocity
inhomogeneities. At low SNRs, on the other hand, spatial
covariance of tissue harmonic imaging is significantly af-
fected. Because the tissue harmonic signal is much weaker
than the linear counterpart, the low SNR reduces the ac-
curacy of correlation-based estimation. It is concluded that
the linear signal is more suitable for correlation-based cor-
rection of sound velocity inhomogeneities, despite the fact
that tissue harmonic imaging generally has improved image
quality over linear imaging.

I. INTRODUCTION

MAJOR PROBLEM for diagnostic ultrasound systems is

the image quality degradation resulting from sound
velocity inhomogeneities [1]-[8]. Sound velocity inhomo-
geneities distort both amplitude and phase of the acoustic
signal. Many methods have been proposed to restore the
degraded resolution [3]-[8]. Flax and O’Donnell proposed
that sound velocity inhomogeneities can be modeled as
a near field phase screen. Under this assumption, the in-
homogeneities simply produce time delay errors that can
be estimated based on the correlation function of signals
either from adjacent channels [3], [4] or from individual
channels and the beam sum [5]. An alternative approach
models sound velocity variations by a phase screen dis-
placed from the transducer surface [6]. Hence, acoustic
signals are backpropagated to an optimal depth before the
correlation function is calculated. In the presence of dis-
tributed sound velocity inhomogeneities, the received sig-
nal can also be decomposed into spectral sub-bands before
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the time delays are estimated [7]. Although the specific
details are different, all of the above methods utilize the
correlation function to find time delay errors. Performance
of the correlation-based methods is determined by spatial
covariance: the higher the correlation, the more accurate
the time delay estimates.

Spatial covariance is described by the van Cittert-
Zernike theorem [9]. It has been shown that the spatial
covariance of signals backscattered from randomly dis-
tributed scatterers and the incident pressure field are a
Fourier pair. Consequently, spatial covariance decreases as
the distance between two channels increases. Without fo-
cusing errors, spatial covariance is proportional to the au-
tocorrelation function of the transmitting aperture. With
focusing errors, on the other hand, the spatial covariance
function becomes narrower because the transmit beam be-
comes wider.

Spatial covariance decreases with distance because of
phase-sensitive interference of scatterers within a sample
volume. The spatial decorrelation rate is determined by
both the sample volume geometry and the carrier fre-
quency. For a fixed sample volume, the decorrelation rate
is proportional to frequency, because a higher frequency re-
sults in larger phase changes, assuming all other conditions
are fixed. Similarly, for a fixed frequency, a larger sample
volume also increases the spatial decorrelation rate. This
leads to an important property of the van Cittert-Zernike
theorem in linear imaging: spatial covariance is indepen-
dent of the imaging frequency if a fixed aperture is used. In
other words, although a high frequency results in a faster
decorrelation rate, it also produces a smaller sample vol-
ume because the aperture is unchanged. Thus, the spatial
covariance for linear imaging at f, is the same as the spa-
tial covariance for linear imaging at 2fy using the same
aperture. This property will be tested and extended to
tissue harmonic imaging in this paper.

Tissue harmonic imaging has proven to provide clin-
ically useful images even on technically difficult bodies
[10]-[14]. Because of its improved acoustic beam charac-
teristics, it was suggested that the tissue harmonic signal
can be combined with the linear signal to improve accu-
racy of correlation-based estimation of time delay errors
[15]. In other words, by properly selecting the frequency
pass bands of filters used for imaging and for time delay
estimation, advantages over conventional approaches may
be provided. To develop an optimal correction strategy
successfully, it is necessary to understand characteristics
of spatial covariance in tissue harmonic imaging fully. In
this paper, spatial covariance of tissue harmonic signals is
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investigated by using both simulations and experiments.
Particularly, effects of the low SNR of tissue harmonic sig-
nals and sound velocity inhomogeneities in the body will
be studied. In addition, spatial covariance in tissue har-
monic imaging will also be compared with that in linear
imaging.

II. SIMULATION METHODS AND EXPERIMENT SETUP

Both simulations and experiments were conducted. In
the simulations, a phased array with 128 elements was
assumed on both transmit and receive. The array had a
pitch of 0.2 mm and a height of 7 mm. The axial focal
depth was 55 mm. On transmit, non-linear propagation
was simulated. The simulation model was similar to the
one used by Christopher [11] and Li and Shen [14]. The
model approximates continuous beam formation by incre-
mental field propagation. Acoustic propagation of arbi-
trary transmit waveforms can be simulated. The transmit
waveform is first decomposed into discrete temporal fre-
quency components. At each increment, linear propagation
is simulated based on the angular spectrum method [16],
[17]. The nonlinear propagation is approximated based on
a finite amplitude distortion model [18]. As shown in the
following equation, the finite amplitude distortion model
utilizes the frequency domain solution to Burgers’ equa-
tion, i.e.,

un(z + Az) = ul, (2 + Az)

ﬁﬂfAz(Zk e k-l—ZnUku n>’

(1)

where z is the propagation direction and Az is the prop-
agation increment. The fundamental frequency is denoted
by f, and 3 is a parameter representing the nonlinearity of
the propagating medium. The term u/, (z-+Az) denotes the
temporal velocity field at frequency nf (n is an integer)
and at depth z + Az after linear propagation. u,(z + Az)
denotes the temporal velocity field after nonlinear prop-
agation. The symbol ¢ is sound velocity. In the simula-
tions, the sound velocity was set to 1.54 mm/us, and 3
was set to 3.5. A 2-MHz Gaussian pulse with 50% frac-
tional bandwidth was used as the transmit waveform. The
fundamental signal was extracted by a low-pass filter with
a flat frequency response between dc and 3 MHz. The har-
monic signal was extracted by a band pass filter with a
flat frequency response between 3 and 6 MHz.

Linear propagation on receive was based on the method
proposed by Li and Zagzebski [19]. The signal received by
each element, s(¥,w), was computed by integrating the
responses from scatterers within the region of interest to
points over the entire receive transducer element. In other
words, we have

ed k=]

b/2
s(rw) = /b/z/—a/2 |7 — 7|

————da'dy (2)
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where symbol ¢ and symbol b are the width and the height
of the transducer element, respectively; 7 is a vector rep-
resenting the position of a scatterer; 7l represents a point
in a transducer element; & is the wave number; and w rep-
resents the angular frequency. Nonlinear propagation on
transmit generates both fundamental and harmonic sig-
nals. The signals interact with scatterers within the region
of interest and linearly propagate back to the transducer
on receive. The received signals are then used for spatial
covariance analysis.

Experiments were also conducted to measure spatial co-
variance using the experimental setup shown in Fig. 1. A
gelatin-based ultrasonic phantom with uniform distribu-
tion of glass beads (Sigma G4649; Sigma Chemical Co., St.
Louis, MO) was used as a speckle-generating object. An
arbitrary function generator (Hewlett-Packard E1445A;
Hewlett-Packard, Palo Alto, CA) was used to generate the
desired transmit waveform. A power amplifier (Amplifier
Research 25A250A; Souderton, PA) was used to amplify
the transmit waveform and to drive a 3.5-MHz single crys-
tal transducer (Panametrics V381; Panametrics, Waltham,
MA). The transducer had an 80% —6 dB bandwidth, a di-
ameter of 19 mm, and was geometrically focused at 70 mm.

The scattered signals were received by a separate ar-
ray transducer. Setup of the transmit/receive transducers
is shown graphically in Fig. 2. The two transducers were
carefully aligned to ensure that signals from the focal zone
of the transmitting transducer were received. Although it
is different from conventional pulse-echo imaging, in which
the same transducer is used for both transmit and receive,
the setup shown in Fig. 2 can still be used for spatial
covariance analysis without loss of generality. For linear
imaging, a 5-MHz transducer array (Acuson V5; Moun-
tain View, CA) was used. For second harmonic imaging,
a 7-MHz transducer array (Acuson V7) was used. Both
arrays had 128 channels, one-half-wavelength interelement
spacing, and approximately an 80% fractional bandwidth.
Selection of the transducer in different imaging modes was
based on the respective frequency range of fundamental
imaging and second harmonic imaging. A three-axis step-
motor system (Q-Sync; Hsin-Chu, Taiwan, R.O.C.) was
used to position the arrays such that the returning echoes
could be received at different locations for spatial covari-
ance analysis. By using the step motor system, both the
linear signal and the second harmonic signal can be mea-
sured at the same positions. Note that elevational focal
depths of the two arrays were both shallower than the fo-
cal depth of the transmit transducer. Thus, the effective
two-way sample volume is primarily determined by the
transmit sample volume because echo data were acquired
near the transmit focal depth and out of the receive focal
zone. The received signal was then sent to an ultrasonic re-
ceiver (Panametrics Model 5800; Waltham, MA). Finally,
an analog-to-digital converter with a 20-Msamples/s sam-
pling rate and 12-bit resolution (Hewlett-Packard E1429A)
was used to sample the signal for off-line processing. The
received data were up-sampled to 160 Msamples/s (i.e.,
6.25-ns temporal precision) before the covariance functions
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Fig. 1. Schematic diagram of the spatial covariance experimental setup.
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Fig. 2. Setup of the transmit and receive transducers.

were calculated. At each measurement point, the acous-
tic signal was acquired 16 times for signal averaging. The
entire experimental setup was controlled by a Pentium-
class personal computer with HP VEE software (Hewlett
Packard).

I11. EFFECTS OF SNR

Spatial covariance analysis in [9] assumes that the SNR
is sufficiently high that the effects on spatial covariance can
be ignored. In a noisy environment, however, the low SNR,
may affect the measured spatial covariance. In general, the
covariance decreases with the SNR [20], [21]. The change
in SNR has a bigger impact on the correlation results if the
original SNR is lower. Because the tissue harmonic signal is
typically lower than the fundamental signal by more than

20 dB [11]-[14], effects of the SNR cannot be ignored. To
test this hypothesis, we investigated the spatial covariance
with different SNRs.

Simulations were performed to investigate the spatial
covariance in tissue harmonic imaging. The SNR was first
assumed to be infinite (i.e., no noise was added in the
simulations). Results are shown in Fig. 3. The horizon-
tal axis represents the distance between two measurement
positions normalized to the transmit aperture size. The
vertical axis denotes normalized spatial covariance (i.e.,
correlation coefficient). The data window length for calcu-
lating the correlation coefficients was 2 us for second har-
monic signals and 4 us for fundamental signals. Ten inde-
pendent simulations with different scatterer distributions
were used. The solid line represents average correlation co-
efficients for linear imaging at 2 MHz, and the dotted line
denotes average second harmonic correlation coefficients
at 4 MHz. Error bars represent +1 standard deviation.
As predicted by the van Cittert-Zernike theorem, spatial
covariance in both cases decreases approximately linearly
with the distance. This was also reported by Gauss and
Trahey [22]. Nonetheless, spatial covariance in harmonic
imaging is consistently lower than that in linear imaging.
This is in agreement with the fact that a second harmonic
beam at 2f; is wider than the linear beam at twice the fun-
damental frequency (i.e., also at 2fo) [11]. Because spatial
covariance and the transmit beam are a Fourier pair, spa-
tial covariance in tissue harmonic imaging is expected to
be lower than that in fundamental imaging. Thus, the lin-
ear signal is preferred for the calculating of the correlation
function.

Fig. 4 and 5 demonstrate correlation coefficients at var-
ious SNRs. The SNR for linear imaging was set to be in-
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Fig. 3. Simulated spatial covariance. Solid line: 2-MHz fundamen-
tal signal; dotted line: 4-MHz second harmonic signal. Error bars
indicate &1 standard deviation.

finite, 40 dB, and 20 dB. Because the second harmonic
signal was 20 dB lower than the fundamental signal in the
simulations, the SNR, for harmonic imaging corresponded
to infinite, 20 dB, and 0 dB, respectively. In both figures,
results with an infinite SNR (shown by the solid lines)
were the same as the two curves shown in Fig. 3. The dot-
dashed lines denote an SNR of 40 dB for linear imaging
and 20 dB for harmonic imaging. Similarly, the dotted lines
represent an SNR of 20 dB for linear imaging and 0 dB for
harmonic imaging. It is shown that spatial covariance is
significantly affected at a low SNR. Because the SNR for
tissue harmonic imaging is typically low, the SNR plays
a more important role in tissue harmonic imaging than in
fundamental imaging.

Effects of the SNR were also investigated by experi-
ments. The SNR, was varied by adjusting the peak ampli-
tude of output of the arbitrary function generator shown in
Fig. 1. The high SNR corresponded to a peak amplitude of
5V, and the low SNR. corresponded to a peak amplitude of
1 V. In both cases, the transmit waveform had a Gaussian
envelope with a 3.5-MHz center frequency and a 25% frac-
tional bandwidth. Signal processing for experimental data
was similar to that for simulation data. The fundamental
signal was extracted by a band-pass filter with a flat fre-
quency response between 2.5 and 4.5 MHz. The harmonic
signal was extracted by another band-pass filter with a
flat frequency response between 6 and 8 MHz. The data
window length for covariance analysis was 10 us.

Fig. 6 shows the covariance function at the fundamen-
tal frequency (i.e., 3.5 MHz), and Fig. 7 shows results at
the second harmonic frequency (i.e., 7 MHz). SNRs of the
fundamental signals were about 35 dB (solid) and 30 dB
(dotted), and the corresponding SNRs of the harmonic sig-
nals were about 20 dB (solid) and 5 dB (dotted). Fig. 6
indicates that spatial covariance was not affected by the
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Fig. 4. Simulated spatial covariance of 2-MHz fundamental signal.

Solid line: SNR = infinite; dot-dashed line: SNR = 40 dB; dotted
line: SNR = 20 dB. Error bars indicate +1 standard deviation.
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Fig. 5. Simulated spatial covariance of 4-MHz second harmonic sig-
nal. Solid line: SNR = infinite; dot-dashed line: SNR = 20 dB; dotted
line: SNR = 0 dB. Error bars indicate £1 standard deviation.

change in SNR in linear imaging. In addition, both eurves
decrease from one to zero as the distance increases from
zero to the transmit aperture size. However, the correlation
coefficient in Fig. 7 reduces significantly when the transmit
voltage changes from 5 to 1 V. This agrees with the results
shown in Fig. 4 and 5. Fig. 8 redraws the high SNR results
shown in Fig. 6 and 7. The solid line is for fundamental
imaging, and the dotted line is for second harmonic imag-
ing. Both curves decrease from one to zero as the distance
increases from. zero to the transmit aperture size. Again,
the harmonic coefficients are consistently lower than the
fundamental coefficients. The results agree well with the
simulation results shown in Fig. 3. '
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Fig. 6. Spatial covariance of 3.5-MHz fundamental signal. Solid line:
high SNR; dotted line: low SNR.
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Fig. 7. Spatial covariance of 7-MHz second harmonic signal. Solid
line: high SNR; dotted line: low SNR.

The signals received at different positions can also be
used to form images using the synthetic aperture approach.
Because the transmit aperture was fixed, the synthesized
images with dynamic focusing and steering on receive can
be used to evaluate the transmit beam. This is also known
as the fixed direction transmit and all direction receive
focusing [23], {24] or the single transmit imaging [25].
As shown in Fig. 2, the image was actually the trans-
mit beam sliced by the receiver scan plane. The upper
panel of Fig. 9(a) shows the 3.5-MHz fundamental beam
using single transmit imaging over a 30-dB display dy-
namic range. The image is with sector scan format prior
to scan conversion. The horizontal axis is the steering an-
gle and the vertical axis represents the image range. The
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Fig. 8. Spatial covariance of 3.5-MHz fundamental signal (solid line)
and 7-MHz second harmonic signal (dotted line).

lower panel of Fig. 9(a) shows the lateral beam plot by
projecting the pattern in the upper panel along the range
direction. Fig. 9(b) shows the second harmonic beam in
the same format. Note that high sidelobes are present in
Fig. 9(b) because echo data were acquired out of the el-
evational focal region of the receive aperture. Compared
with the fundamental beam pattern, the second harmonic
beam has a narrower lateral beam width and a higher noise
background. The narrower harmonic beam does not bene-
fit the harmonic spatial covariance because it is still lower
than the linear spatial covariance, as shown in Fig. 8. In
addition, the low SNR of tissue harmonic imaging may
also degrade the spatial covariance. Thus, tissue harmonic
imaging does not provide any advantage over linear imag-
ing in terms of accuracy of correlation-based time delay
estimation, despite the fact that the harmonic beam is
narrower than the fundamental beam.

IV. EFFECTS OF SOUND VELOCITY INHOMOGENEITIES

Tissue harmonic imaging is less sensitive to sound ve-
locity variations present in the body [11], [12]. Simula-
tions and experiments were also conducted to compare
spatial covariance in the presence of sound velocity in-
homogeneities. To model sound velocity variations, a dis-
placed phase screen was included in the simulations. Such
a model is similar to the one proposed by Liu and Waag
[6]. Two different media were included in the simulations.
The medium next to the transducer had a propagation
velocity of 1.45 mm/us, a uniform thickness of 15 mm,
and a § of 6 to mimic the nonlinear properties of fat tis-
sue [26]. The deeper medium had a propagation velocity
of 1.54 mm/us, a thickness of 65 mm, and a 3 of 3.5.
Axial focus was at 55 mm from the transducer. Time de-
lay errors resulting from irregular thickness of fat tissue



SHEN AND LI: TISSUE HARMONIC IMAGE ANALYSIS

3.5MHz Fundamental Transmit Beam

Range(mm)
=)

9 45

0
Beam Angle(degree)

7MHz Second Harmonic Transmit Beam

63

Range(mm)
3

~
~

0 45
Beam Angle(degree)

Fig. 9. a) 3.5-MHz fundamental transmit beam (top) and the pro-
jected lateral beam plot (bottom). b) 7-MHz second harmonic trans-
mit beam (top) and the projected lateral beam plot (bottom).

were simulated using a two-dimensional phase screen at
the boundary of the two media. The time delay errors had
a correlation length of 5 mm and a standard deviation of
93 ns. Results are shown in Fig. 10; error bars represent
+1 standard deviation. Spatial covariance decreases more
rapidly for both linear imaging and harmonic imaging be-
cause of the distorted transmit beam. Similar to the results
shown in Fig. 3, where sound velocity variations were ab-
sent, the harmonic covariance is generally lower than the
fundamental covariance, even in the presence of sound ve-
locity variations.

Effects of sound velocity inhomogeneities were also ex-
perimentally investigated by inserting a rubber layer (Gen-
eral Electric RTV511; Waterford, NY) between the trans-
mit transducer and the gelatin phantom shown in Fig. 2.
Peak amplitude of output of the function generator was set
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Fig. 10. Simulated spatial covariance in the presence of sound ve-
locity inhomogeneities. Solid line: 2-MHz fundamental signal; dotted
line: 4-MHz second harmonic signal. Error bars indicate £1 standard
deviation.

to 5 V to ensure adequate SNR for both fundamental imag-
ing and second harmonic imaging. The rubber had a sound
velocity of 1.015 mm/us, an average thickness of 5 mm,
and a correlation length of about 6 mm. Sound velocity
variations were introduced by making the surface of the
rubber layer irregular. The standard deviation of arrival
time errors of the rubber layer was about 70 ns. Because a
separate transducer was used on receive, the receive trans-
ducer was not affected by the rubber layer. Spatial covari-
ance functions are shown in Fig. 11, and the corresponding
transmit beam patterns are shown in Fig. 12. As shown
in Fig. 11, the covariance decreases more rapidly than the
theoretical curve because of the inserted rubber layer. Nev-
ertheless, the fundamental spatial covariance (solid line) is
generally similar to the second harmonic spatial covari-
ance (dotted line). The second harmonic beam, shown in
the lower panel of Fig. 12, is noticeably narrower than the
fundamental beam, shown in the upper panel. Again, tis-
sue harmonic imaging does not provide any advantages in
terms of accuracy of correlation-based time delay estima-
tion, despite the fact that the harmonic beam is narrower
than the fundamental beam. Moreover, if aberrations are
included in the receive path, the harmonic beam may be
more degraded than the fundamental beam because of the
higher frequency. Therefore, the linear signal is preferred
for the calculation of the correlation function.

The assumption that a higher frequency linear beam is
more affected by sound velocity inhomogeneities than a
lower frequency linear beam was also tested. Fig. 13 shows
the spatial covariance functions for linear imaging at both
3.5 and 5 MHz in the presence of sound velocity inhomo-
geneities. The 5-MHz array transducer was used to receive
returning echoes in both cases. Because time delay errors
were introduced by the same rubber layer, sound velocity
inhomogeneities produced small phase errors at the lower
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Fig. 11.-Spatial covariance of 3.5-MHz fundamental signal (solid line)
and 7-MHz second harmonic signal (dotted line) in the presence of
sound velocity inhomogeneities.
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Fig. 12. Lateral beam plots of 3.5-MHz fundamental signal (top) and
7-MHz second harmonic signal (bottom) in the presence of sound
velocity inhomogeneities.

frequency and larger phase errors at the higher frequency.
Thus, the covariance function at 3.5 MHz declines more
slowly than the 5-MHz counterpart. In other words, the
lower portion of the received linear signal generally pro-
vides more accurate correlation-based estimation results.

Finally, spatial covariance of the harmonic signal and
the fundamental signal received at the same frequency
was evaluated in the presence of sound velocity inhomo-
geneities: In this case, a 2.5-MHz pulse was transmitted to
obtain the second harmonic signal at 5 MHz. Another 5-
MHz pulse was transmitted for the linear response. The re-
sults are compared in Fig. 14 and 15. It is shown in Fig. 14
that the 5-MHz harmonic signal (dotted line) has higher
covariance than the 5-MHz fundamental signal (solid line).

0.5
Normalized Distance
Fig. 13. Spatial covariance of 3.5-MHz fundamental signal (solid line)

and 5-MHz fundamental signal (dotted line) in the presence of sound
velocity inhomogeneities.
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Fig. 14. Spatial covariance of 5-MHz fundamental signal (solid line)
and 5-MHz second harmonic signal (dotted line) in the presence of
sound velocity inhomogeneities.

Because the two signals were at the same frequency, the
results are consistent with the measured beam patterns
shown in Fig. 15. The fundamental beam shown in the
upper panel of Fig. 15 is more distorted than the second
harmonic beam shown in the lower panel. Unlike the pre-
vious cases, the 5-MHz harmonic beam was generated by
a 2.5-MHz fundamental beam. Because the 2.5-MHz fun-
damental beam is expected to be less distorted by the rub-
ber layer than the 5-MHz fundamental beam, the 5-MHz
harmonic spatial covariance is higher than the 5-MHz fun-
damental spatial covariance. '
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Fig. 15. Lateral beam plots of 5-MHz fundamental signal (top) and
5-MHz second harmonic signal (bottom) in the presence of sound
velocity inhomogeneities.

V. CONCLUDING REMARKS

In this paper, spatial covariance under various condi-
tions was investigated. It was shown that, if an adequate
SNR is available, the spatial covariance functions at both
the fundamental frequency (e.g., fo) and the second har-
monic frequency (e.g., 2fo) have good agreement with the
prediction of the van Cittert-Zernike theorem, but the har-
monic covariance is consistently lower than the fundamen-
tal covariance, with or without the presence of sound ve-
locity variations.

At low SNRs, effects of the SNR cannot be ignored. In
this case, the spatial covariance decreased, and accuracy of
the correlation-based estimation may be affected. Because
the SNR of tissue harmonic imaging is significantly lower
than the SNR of fundamental imaging, the linear signal is
preferred for correlation-based correction of sound velocity
inhomogeneities. Note that both the fundamental signal at
fo and the second harmonic signal at 2f; are available for a
single firing. Thus, a tissue harmonic imaging system may
use the fundamental signal for correlation-based time delay
estimation and the second harmonic signal for imaging.

In the presence of sound velocity inhomogeneities, per-
formance of the correlation-based processing can be im-
proved by using the lower frequency portion of the received
linear signal. As shown in Fig. 13, the 3.5-MHz covariance
is noticeably higher than the 5-MHz covariance. Thus, the
lower frequency portion of a received broadband echo can
be used to improve accuracy of correlation-based time de-
lay estimation.
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