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中文摘要 

本論文主要研究超音波陣列系統的孔徑信號(aperture domain data)相關之成

像方法與信號處理技術。一般系統廣泛運用的波束形成技術為延遲-加總法，此

方法可藉由調整各頻道的時間延遲和權重而使得聲波波束可以電子式聚焦到特

定深度及可以任意地調控與位移波束，並調整橫向解析度及波束形狀而使得掃描

深度內皆為動態聚焦。在波束加總前的各頻道接收信號亦稱為孔徑信號。在傳統

的系統裡，孔徑信號會因為資料量過於龐大而在波束加總後被捨棄，但延遲-加

總法僅能獲得波束方向上的空間資訊反而使得超音波影像在臨床上的應用受到

限制。本論文中將探討向量流速估計與相位偏移校正方法等兩種孔徑信號處理技

術。 

 在第一部份流速估計的應用上，使用所提出的使用孔徑信號之二維流速估測

方式來改善傳統的流速估計方法只能量測平行波束方向的流速分量。在這方法中

一個沿著陣列方向之時間偏移量變曲線被建立並近似成為一次多項式來求得軸

向與橫向速度分量。我們經由模擬和實驗來驗證方法的可行性，結果顯示所提出

的方法能改善向量流速估計之誤差且其結果比傳統流速估計法來的更佳，並且可

以實現即時二維血流量測。 

在相位偏移校正的應用上，我們使用臨床乳房影像驗證一基於接收孔徑信號

之同調性的旁瓣抑制法。傳統灰階超音波在乳房病灶偵測上常會因為對比解析度

不足而使其效果被限制。由臨床實驗結果顯示相較於傳統基於相關性之方法，所

提出的權重方法能顯著的改善乳房影像品質。 

在本論文的第三部分，基於同調性的旁瓣抑制法也被延伸應用到高速超音波

影像上，在這方法中使用一高精確度之 Capon 估計法來量測同調能量，並使用

僅八次平面波激發與合成發射孔徑方法來達到高速成像。模擬和實驗結果皆顯示

所提出之方法都能對對比度與病灶清晰度等影像品質有所改善。結果顯示這些基

於同調性的方法能有效改善臨床上的病灶偵測，因我們所提出之方法無須任何聚

焦誤差的假設便能有效降低旁瓣貢獻。本論文開發多種影像方法並有效提升流速

與對比解析度有助於提升臨床診斷。論文最後亦將探討相關技術之延伸應用。 
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ABSTRACT 

The purpose of this dissertation is to investigate various processing techniques 

for ultrasound image formation and signal processing based on aperture domain data 

for ultrasonic system using arrays. Conventionally,  an array system utilizes the widely 

adopted delay-and-sum method to focus acoustic beams electrically at specific depths 

with arbitrary steering and shifting by the delay and weighting of each array element.  

This method can adjust lateral resolution and beam-shapes and therefore provides 

dynamic focusing throughout the scan depth. The data recorded from individual array 

channels prior to beam summation are referred to aperture domain data and are often 

discarded after beam summation due to a large data size. However, the delay-and-sum 

method only preserves the spatial information along the beam direction and therefore 

limits the clinical applications. In this thesis, two specific tasks of aperture domain 

data processing including vector velocity estimation and phase-aberration (i.e., 

focusing errors resulting from sound-velocity inhomogeneities) correction are 

investigated.  

The first topic in this dissertation is the vector flow estimation. A conventional 

scanner can only estimate the flow velocity parallel to the beam axis. The proposed 

flow estimation technique uses aperture domain data for 2D flow-velocity estimation. 

A time-shift profile along the array direction is constructed and approximated by a 

first-order polynomial to determine the axial and lateral velocity components. The 

efficacy of the vector velocity estimation method is verified by simulations and 

experiments. The results demonstrate that the accuracy of the proposed method is 

comparable to existing vector velocity estimation method and real-time 

two-dimensional velocity vector estimation is feasible.  

For phase-aberration correction, a sidelobe-reduction technique based on the 

coherence of the receive aperture domain data is tested with clinical breast data. The 

performance in lesion detection using B-mode ultrasound is often limited by poor 

contrast resolution. Experimental results demonstrate that the proposed weighting 
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method is feasible in breast imaging and rivals the conventional correlation-based 

method with significant image quality improvement.  

In the third part of the dissertation, the coherence-based sidelobe-reduction 

technique is also extended to high-frame-rate adaptive imaging with a high accuracy 

Capon estimator to estimate the coherent energy. The high frame rate image is formed 

using plane-wave excitation and a synthetic transmit aperture method using only 8 

firings. Significant improvement in contrast and lesion definition is demonstrated 

through the simulations and breast imaging experiments. The results demonstrate that 

these coherence-based methods are feasible to improve lesion detection in clinics 

since these techniques can effectively reduce sidelobe contributions without any 

assumption regarding the source of focusing errors. In summary, advanced imaging 

techniques were developed in this thesis to improve velocity and contrast resolution 

and thus increase diagnostic confidence in clinics. Potential extended application of 

these methods will also be described. 
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CHAPTER 1 INTRODUCTION 

1.1 ULTRASONIC ARRAY SYSTEM 

Ultrasound, because of its noninvasiveness and cost-effectiveness, is often the 

preferred imaging modality. Diagnostic ultrasound continues to evolve by improving 

in convenience, ease of use, portability, diagnostic capability, and image quality. Over 

the years, ultrasound has adapted to new applications through new arrays suited to 

specific clinical purposes and to signal processing. Also, a variety of transducer types 

have been invented and adapted to specific clinical usage (Fig. 1-1). New 

functionalities and features from the new arrays and signal processing techniques 

provide many opportunities to solve relevant and interesting problem. 

 

Fig. 1-1. A variety of (a) ultrasound array systems and (b) array transducers (from the website: 

http://www.gehealthcare.com/). 

In a typical medical ultrasound system (Fig. 1-2), the transmit beam former 

determines the delay pattern and pulse train that set the desired focal point. The 

outputs of the transmit beam former are then amplified by high-voltage transmit 

amplifiers to drive the transducer array. These amplifiers can be controlled by 

digital- to-analog converters to shape the transmit pulses. Multiple transmit focal 

regions are typically used to extend the field of view by ameliorating the attenuation 
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associated with propagation through tissues. On receive, the transmit/receive switch 

blocks the high-voltage transmit pulses, allowing the receive signals to be amplified 

using low-noise amplifiers. In receive beam forming, radio frequency (RF) signals are 

acquired from multiple channels of the transducer array and geometrical delays are 

applied to each channel to focus the signal at a certain range. The channels are then 

summed across the aperture domain prior to B-mode image processing, color Doppler, 

or spectral Doppler. Finally, the processed data are scan-converted for video display.  

 

Fig. 1-2. Schematic diagram of a medical ultrasound system.  

1.2 BEAM FORMATION AND APERTURE DOMAIN PROCESSING  

Beam formation is an aperture domain data processing algorithm that is used to 

control the directionality of the reception or transmission of a signal on a transducer  

array [1]. The beam is controlled by beam control methods, such as dynamic aperture, 

dynamic focusing and apodization. Beam forming techniques direct the majority of 
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signal energy from a group of transducer in a chosen angular direction. The most 

prevalent beam forming method is the delay-and-sum method [2]. This method forms 

an ultrasonic beam with a linear phased array by properly delaying the transmit and 

receive signals. Since the spherical wave propagation in the near field region should 

be considered, both steering and focusing delays are required in the delay-and-sum 

technique for ultrasound beam forming. 

 

Fig. 1-3. Schematic diagram of receive beam formation 

An ultrasound receive beam former is schematically shown in Fig. 1-3. Typically, 

the receive channel data can be expressed as: 

0( ) ( )exp( 2 ( ) )n nr t A t j f t    ,                   (1-1) 

where A  is the envelope of the receive signal from channel n, f0 is the center 

frequency of the emitted signal,   is an arbitrary phase factor that depends on the 

depth, and t is the arrival time of the receive signal. The aperture domain data are 

obtained after applying the geometrical delays but prior to beam summation, that is: 

0( ) ( ) ( )exp( 2 ( ) )n n n n n nx t r t A t j f t           ,         (1-2) 
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Fig. 1-4. An illustration of a conventional beam forming processing.  

where n  is the receive delay at channel n. Finally, beam sum data are the sum of the 

aperture domain data across the array: 

1

( ) ( )
N

n

n

y t x t


 .                           (1-3) 

where N is the total number of elements. Typically, the applied delay at each channel 

n  
can be formulated as: 

2
22 sin cos

2
n n n

R
X X

c c Rc

 
    .                  (1-4) 

where R is the range from the focal point to the center of the transducer, c is the sound 

velocity,   is the beam steering angle, and Xn is the channel position along the array 

direction (X). Fig. 1-4 illustrates the relationship among the rn(t), xn(t), and y(t). Since 

each element itself has a broader radiation pattern (i.e., is associated with more spatial 
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information) than the entire aperture, the aperture domain data provide more 

information than the beam-sum data. However, the data rate of aperture domain data 

(e.g., typically several GB/sec for a real-time 128-channel system) makes it 

technically difficult to transfer and to store them in real time, and so a conventional 

ultrasound system discards these data after beam summation. The use of aperture 

domain processing techniques to extract the hidden spatial information such as 

directional flow or to improve the imaging quality is of great interest. Moreover, the 

increasing capabilities of high-performance digital electronic devices have enabled 

implementation of new aperture domain processing techniques for digital ultrasound 

systems, which have been extensively studied to improve the performance in adaptive 

imaging [3-17], vector flow estimation [18-20], limited-angle tomography [21, 22], 

and coded excitation [23]. 

1.3 LIMITATIONS OF BEAM SUM DATA 

 Most ultrasound systems discard aperture domain data after the processing of 

beam summation due to the large amount of data size. Although the data size is less to 

use the beam sum data than to use the aperture domain data, the beam sum data also 

contain less spatial information than the aperture domain data. The state-of-the-art 

aperture domain processing techniques utilize this hidden information and enable the 

study to improve the accuracy of flow estimation or to improve the imaging quality. 

1.3.1 Issues of Flow Estimation 

Determining the true blood flow velocity is important in medical ultrasound for 

diagnosing various diseases and traumas [18, 19, 24-32]. Current commercial 

ultrasound imaging systems utilize conventional color Doppler techniques. The 

estimated blood velocities are visualized in a color image that is superimposed on a 

B-mode image. Such images that combine information on the blood flow and tissue 

structure have been extensively used for studying blood flow in the human body. The 

conventional method, however, can only estimate the axial velocity component of the 
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blood flow (i.e., the velocity component parallel to the axis of the stimulating beam) 

[24]. The inability to estimate nonaxial velocity components results in 

underestimation of the vector velocity, and is a fundamental limitation to 

quantitatively estimating blood flow.  

Conventional flow estimation techniques use autocorrelation technique to 

estimate the arrival time difference resulting from the flow motion. The 

autocorrelation function is formulated as: 

1
*

1

1
( ) ( ) ( 1)

1

M

i

R t y i y i
M





  

 ,                  (1-5) 

where the R(t) is the auto-correlation function, i is the i-th firing out of M firings. 

Then the arrival time difference can be estimated using the phase of the 

auto-correlation function [24], as: 

0

Im( ( ))
arctan( )

Re( ( ))

2 2 c

R t

R t

f f




 


   ,                  (1-6) 

where   is the phase of the R(t). Finally, the flow velocity can be estimate as: 

PRI

c
v

 
 ,                          (1-7) 

where PRI denotes the pulse repetition interval. This phase-shift or time-shift 

estimation technique for blood flow estimation is extensively used in the conventional 

system. Conventional systems utilize this technique to estimate the flow velocity 

along the beam direction and maps the estimated velocities using red and blue colors 

to indicate the flow is toward and away the transducer, respectively. This real-time 

flow velocity visualization technique is also known as the color Doppler technique 

(Fig. 1-5). However, the conventional technique can only estimate the arrival time 

difference for the motion along the beam axis (i.e., axial velocity). This results in 
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estimation errors of the flow velocity. To estimate the true flow velocity the flow 

component transverse to the beam axis (i.e., lateral velocity) should also be estimated.  

 

Fig. 1-5 Flow estimation within internal carotid artery using color Doppler technique (from the 

website: http://www.gehealthcare.com/). 

Figs. 1-6 and 1-7 illustrate the effects of a point- like target with an axial motion 

and a lateral motion, respectively. The top panels of Figs. 1-6 and 1-7 illustrate that a 

point target is moving along the beam axis (i.e., axial motion) and is moving 

transverse to the beam axis (i.e., lateral motion), respectively. The bottom panels of 

Figs. 1-6 and 1-7 illustrate the corresponding aperture domain data and the beam sum 

data. Fig. 1-6 shows that an axial-motion results in time-shifts in both aperture 

domain data and beam sum data. Furthermore, the time-shifts for the aperture domain 

data are identical at all receive channels. Therefore, axial velocity estimation can be 

further improved using the mean estimated velocity with multiple estimations from all 

array elements. Fig. 1-7, on the other hand, shows that only aperture domain data can 

estimate the laterally moving target. The beam sum data are not influenced by a 

lateral motion of the target and cannot be used for lateral velocity estimation. For 

aperture domain data, the arrival time differences are tilt shifts along the array 

direction. The lateral velocity can be estimated using the tilt slope of the arrival time 

differences across the array. Therefore, aperture domain data are of particular interests 

in the flow estimation studies.  
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Fig. 1-6. Illustration of the relationship between the aperture domain data and beam sum data 

for a point-like target with an axial motion. 

 

Fig. 1-7 . Illustration of the relationship between the aperture domain data and beam sum data 

for a point-like target with a lateral motion. 
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1.3.2 Issues of Phase Aberration 

A practical limitation of medical ultrasound is the focusing errors introduced by 

sound-velocity inhomogeneities in the human body. Because the sound velocity varies 

over a wide range (e.g., 1450 m/s in fat and 1665 m/s in collagen [33]), the use of a 

constant sound velocity to calculate focusing delays inevitably results in focusing 

errors. Therefore, the delay calculation of the conventional beam forming is not 

generally correct for imaging the human body. Such focusing errors are also termed 

phase aberrations, and they degrade both the spatial resolution and the contrast in the 

obtained images.  

 

Fig. 1-8. Illustration of the effects resulted from phase aberration including time delay errors, 

energy level fluctuations, and waveform distortions. 

As illustrated in Fig. 1-8, the aperture domain data are degraded due to time 

delay errors, energy level fluctuations, and waveform distortions. In case of phase 

aberration, the aperture domain data are expressed as: 

0( ) ( ) ( )exp( 2 ( ) )n n n err n n err n errx t B x t B A t j f t                ,    (1-8) 
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where Bn is the energy level fluctuation factor, and 
err  is the arrival time error, and 

err  is the phase error of the receive data and 
0/ 2err err f   . The effect of phase 

aberration cannot be directly corrected from the beam sum data ( )y t . Therefore, 

aperture domain processing technique is a must for phase aberration correction. Fig. 

1.9 shows an example that the imaging quality in female breast is improved by the 

adaptive imaging technique. The breast tissue is technically difficult to image, since 

the speed of sound varies in different types of tissues. Adaptive imaging method 

corrects the phase aberration, and thus improving contrast resolution, and boundary 

definition. The results are better detection of the lesion characteristics to increase 

diagnostic confidence. Following sections will introduce the prior arts of aperture 

domain processing techniques including vector flow estimation and phase aberration 

correction.  

 

Fig. 1-9. An example of adaptive breast imaging. The left and right images show the results of 

conventional imaging and adaptive imaging. The adaptive imaging method improves lesion 

detectability and with calcifications (pointed using arrows) being better presented (from the 

website: http://www.medical.siemens.com). 
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1.3.3 Issues of High Frame Rate Adaptive Imaging 

Ultrasound imaging is extensively used in clinics due to its real-time capabilities, 

noninvasiveness, safety, and cost effectiveness. Typically fixed focusing is applied on 

transmit and dynamic focusing is applied on receive. Frame rates of tens of frames per 

second can be achieved in most diagnostic applications, but this limits applications 

such as the imaging of heart motion [34] and measurements of shear-wave 

propagation [35] where frame rates greater than 100 frames/sec are desirable.  

The round-trip propagation time physically limits the imaging frame rate, and so 

reducing the number of firings is necessary to increase the frame rate. Existing high 

frame rate (HFR) imaging methods use broad transmit beams to decrease number of 

firings [36-38]. A broad transmit beam can be formed using plane-wave excitation 

(i.e., an unfocused transmit beam) [39], a defocused beam [40], or a 

limited-diffraction beam [41, 42]. In this case the insonifying energy is more 

distributed than a focused beam, allowing the simultaneous formation of parallel 

receive beams. Although the frame rate can be increased using broad transmit beams, 

such beams result in a low signal-to-noise ratio (SNR) and image quality [43]. 

Furthermore, the image quality of an HFR system is degraded particularly when 

adaptive imaging methods are applied.  

1.4 VECTOR VELOCITY ESTIMATION TECHNIQUES 

1.4.1 Multibeam Methods 

Several techniques have been proposed for obtaining the velocity vector of blood 

flow, of which one is the multibeam method [25, 26]. The flow velocity axial 

components are estimated along individual beams that are formed using either 

multiple transducers or multiple subapertures that are electronically divided from a 

single transducer array. The flow velocity vectors are estimated along each beam, 

with the vector velocity then reconstructed and estimated using the geometric 

relationship of these beams. However, such systems are complex due to the 
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requirement for confocal, nonparallel transmit beams. Moreover, the angle between 

the beams needs to be large enough to produce an acceptably low estimation variance, 

with the resulting large aperture size limiting the clinical applicability.  

1.4.2 Speckle Tracking Methods 

Another technique is the speckle tracking method [27, 28], which is based on the 

assumption that speckle translation closely reflects target translation at small 

displacements. The 2-D velocity vector can be estimated by tracking the motion of 

speckle patterns between consecutive B-mode images. This method for estimating the 

blood flow velocity is feasible provided that no significant speckle decorrelation 

occurs during the data acquisition time, and hence large amounts of data must be 

acquired. Furthermore, this method is less suitable for real-time estimation since it is 

computationally demanding. 

1.4.3 Transit-time Spectral Broadening Methods 

Another approach is based on the transit-time spectral broadening effect [29-32]. 

This method utilizes the property that the Doppler bandwidth of echo signals is 

inversely proportional to the transit time of a scatterer crossing the sample volume of 

an ultrasound beam; the linear relationship between the Doppler bandwidth and the 

lateral velocity component enables 2-D velocity estimation. However, the bandwidth 

estimation tends to be influenced by system noise and the presence of 

speckle-generating scatterers in the blood, and so achieving an adequate spectral 

resolution requires a long data acquisition time.  

1.4.4 Spatial Quadrature Methods 

One Aperture domain-data-based flow estimation method is spatial quadrature 

[18, 19]. To find the motion transverse to the ultrasound beam, the beam pattern is 

laterally modulated by aperture apodization or a transmit focusing technique. This 

allows phase shifts across the aperture and allows the lateral motion of the blood flow 

can be estimated. Quadrature receive apodizations including an even and an odd 
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apodization function can be used to weight the aperture domain data to generate 

laterally modulated echoes yeven and yodd. The axial and lateral motions can be 

estimated by applying heterodyning functions to remove the interaction between the 

axial and lateral velocity components: 

*het ( ) ( ) ,

het ( ) ( ).

axial even odd even odd

lateral even odd even odd

y jy y jy

y jy y jy

   

   
             (1-9) 

The phase shifts of hetaxial and hetlateral are only related to the axial and lateral velocity 

components, respectively. For scatterers that move across the modulated beam over 

an ensemble time period, the axial and lateral velocity can be estimated as axial and 

lateral phase shifts ( d axial and d lateral):  

,
2 2 PRI

.
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

                      (1-10) 

where lateralk  is the wave number used in the lateral apodization function, and axiald

and laterald  are the estimated phase shifts of hetaxial and hetlateral, respectively. This 

method, however, using aperture appodiation degrades the lateral sensitivity, and the 

axial- lateral inter-modulation degrades the estimation accuracy in the presence of both 

axial and lateral velocity components 

1.5 ADAPTIVE IMAGING TECHNIQUES 

1.5.1 Correlation-based Methods 

The adaptive imaging technique first proposed by Flax and O’Donnell [3, 4] can 

correct errors in beam formation resulting from sound-velocity inhomogeneities. This 

is a correlation-based method that models sound-velocity inhomogeneities as a 
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near-field phase screen, thereby assuming that time-delay errors produce phase 

aberrations only at the surface of the transducer and can thus be estimated by finding 

the peak of the cross-correlation function of the signals from adjacent channels [3, 4] 

defined as 

 

 

1

0

1
( ) ( ) ( )d

T

n n nC t x t x t
T

   ,                   (1-11) 

where T is the correlation duration, and xn and xn+1 are the receive-aperture domain 

data at channels n and n+1, respectively. At each channel, the differential time delay 

between the n-th and n+1-th channels is given by 

max ( )
n

n n n
t

t C t


   .                      (1-12) 

The unwrapped time delays across the aperture are estimated as  

1

N

n i

i

T t


   .                         (1-13) 

After estimating time-delay errors, phase aberrations can be corrected by 

appropriately adjusting for focusing errors. Besides the signal from the adjacent 

channel, the beam sum [5] or partial beam sum [6] is an alternative reference signal 

for estimating arrival-time errors.  

The near- field phase-screen model is inadequate in practice since sound-velocity 

inhomogeneities result in not only time-delay errors but also energy-level fluctuations 

and waveform distortion. This led to a proposed displaced-phase-screen model that 

assumes that phase aberrations can be modeled as a phase screen at some distance 

from the transducer surface [7]. Nevertheless, correlation-based methods remain 

largely inadequate due to aberration integration errors induced by 3D sound-velocity 

inhomogeneities [8]. Removing the effects of such errors in time-delay estimation 

requires the use of a 1.5D or 2D array [8, 44]. Furthermore, the performance of these 
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methods in ultrasonic breast imaging remains inadequate due to the wide spatial 

variations in the sound velocity in breast tissue.  

1.5.2 Adaptive Sidelobe-reduction Methods 

Another approach for correcting phase aberrations is to adaptively reduce 

sidelobes [9-17], which are elevated by focusing errors. In the parallel adaptive 

receive-compensation algorithm (PARCA) [9-12], unwanted sidelobe contributions 

are removed whilst maintaining the mainlobe signal intensity by removing the 

off-axis component from the receive signals after constructing multiple receive beams 

in each transmit direction. The method uses a total- least-squares model to minimize 

focusing imperfections from scatterers. However, the main drawback of the PARCA 

is that it is computationally demanding.  

1.5.3 Coherence-based Methods 

Another adaptive sidelobe-reduction method is based on the use of the coherence 

factor (CF) of the receive-channel data [13-15], which represents a focusing-quality 

index: 

2

2
1

2 2

1 1

( )
coherent energy ( )

CF( )
total incoherent energy

( ) ( )

N

n

n

N N

n n

n n

x t
y t

t

x t x t



 

  



 
.         (1-14) 

The CF weighting processing can be expressed as  

(t)=CF( ) ( )weightedy t y t ,                 (1-15) 

where yweighted denotes the amplitude of the beam sum weighted by the CF. In other 

words, the CF is defined as the ratio between the energy of the coherent sum to the 

total incoherent energy (i.e., N times the incoherent sum). Therefore, an image point 

with a high CF value possesses good focusing quality and its amplitude should be 
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maintained, whereas the amplitude of an image point with a low CF value possesses 

poor focusing quality and its amplitude should be suppressed. Thus, this method is 

effectively an adaptive weighting technique in which the amplitude of each image 

pixel is weighted by the corresponding CF such that the unwanted sidelobes are 

effectively reduced. The CF has also been modified to the generalized CF (GCF) to 

accommodate the coherence properties of speckle-generating objects [16]. The 

efficacy of the GCF-weighting method has been demonstrated for phantom data [16]. 

Continuing study is to test the feasibility of applying the GCF to clinical breast data. 

Specifically, the method will be applied to different types of breast lesions: cyst, 

fibroadenoma, carcinoma, and abscess. Also the potential of coherence-based method 

for high frame rate imaging will be investigated.  

1.6 SCOPE AND DISSERTATION ORGANIZATION 

The functionalities of ultrasound array systems have been limited since only the 

beam sum data are used for signal processing. Regarding the system complexity for 

the array system, it is more preferable to use the beam sum data than the aperture 

domain data. However, only a small fraction of valuable spatial information is 

recorded by the beam sum data. The purpose of this thesis is to develop aperture 

domain processing techniques to improve accuracy of blood flow estimation and to 

improve the image qualities in the presence of phase aberration. Specifically, a flow 

estimation technique based on the arrival time difference of each array element is 

developed. Also, two sidelobe-reduction-based adaptive imaging techniques are 

developed to correct image quality degradation resulted from sound velocity 

inhomogeneities within the human body. 

The dissertation is organized as follows. In Chapter 2, a proposed vector velocity 

estimator using aperture domain data is presented. The conventional velocity 

estimator and the principles of the proposed method are investigated. The 

performance of the proposed method is discussed theoretically. Simulation and real 
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ultrasound data are used to evaluate efficacy of the proposed technique. The proposed 

technique is also compared with conventional vector velocity estimation method.  

Chapter 3 explores the contrast and other general characteristics of the 

coherence-based adaptive imaging technique-generalized coherence factor (GCF). 

The basic principles and experimental methods for the GCF-weighting method are 

described. Clinical breast data are used to verify the efficacy of the method. The 

experimental results are also performed with a correlation-based method as a 

comparison. The results are also discussed. 

In Chapter 4, a coherence-based adaptive imaging method for high frame rate 

imaging is proposed. This method utilizes a high accuracy angle-of arrival estimator, 

namely Capon estimator, to estimate the coherent energy for high frame rate imaging. 

The basic principles of high frame rate imaging and the proposed method are 

described. Simulations and clinical experiments are performed to investigate the 

proposed method. The adaptive imaging method for high frame rate imaging and 

conventional imaging are also discussed. This dissertation concludes in chapter 5. 

Future works are also described. 
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CHAPTER 2 BLOOD VELOCITY VECTOR 

ESTIMATION 

Most conventional blood flow estimation methods only measure the axial 

component of the blood velocity vector. In this chapter, we developed a new method 

for 2-D velocity vector estimation in which time shifts resulting from blood motion 

are calculated for the individual channels using aperture domain data. This allows the 

construction of a time-shift profile along the array direction as a function of channel 

index, which is approximated by a first-order polynomial whose zeroth-order and 

first-order terms can be used to determine the axial and lateral velocity components, 

respectively. The efficacy of the proposed method was verified by simulations and 

experiments in which the transducer array had 64 elements and a center frequency of 

5 MHz. In Section 2.1, the principles of the proposed method is described. The 

performance of the proposed method is discussed in Section 2.2, and the simulation 

results and the experimental results are presented in Section 2.3 and 2.4 respectively. 

The discussion and conclusions are given in Section 2.5. 

2.1 VECTOR VELOCITY ESTIMATION 

2.1.1 Basic Principles of Vector Flow Estimation 

The arrival time of a blood flow echo signal generated by a pulse of ultrasound is 

controlled by the spatial positions of the red blood cells in the sample volume. As 

shown in Fig. 2-1, using the parabolic approximation [45], the arrival time ( ) of a 

target source positioned at ),( 000 Rp   for an array element positioned at nx  

relative to the center of the array is 
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Fig. 2-1. Schematic diagram of the displacement of a point target. 
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where the sample volume is determined by an N-element transducer array at a range 

R , and c  is the sound velocity in the tissue. At the second firing, the target source 

position has moved from 0p  to ),( 111 Rp  , for which the corresponding arrival 

time is 
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The time shift caused by the target displacement is referred to as the arrival-time 

difference. Assuming that the displacement is small enough such that the difference in 

the focusing term can be ignored, the time shift is 

1 1 0 0

1 0
1 0
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             (2-3) 

where 
1X  and 

0X  are the spatial positions of the target sources on the x -axis, 

R  denotes the difference in the range of the sources, and R  is the range of interest. 

In the Fresnel region ( 2 2( )nZ X X  , where cosZ R  ), R  can be further 

approximated as Z . Thus,  

2 n

Z Z
X

c Rc


 
   ,                       (2-4) 

where 1 0X X X   . The first term in this time shift (2 )Z c  is related to the axial 

velocity component because 

PRIaxialZ v   ,                         (2-5) 

where axialv  denotes the axial velocity component and PRI  denotes the pulse 

repetition interval. The second term in (2-4) (( / ) )nX Rc X  is related to the lateral 

velocity component according to  

PRIlateralX v   .                     (2-6) 

Combining (2-4), (2-5), and (2-6) yields 
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                  (2-7) 

This time shift is a first-order polynomial in 
nx  with zeroth- and first-order 

coefficients of 0a  and 
1a , respectively, which can be used to estimate the axial and 

lateral velocity components, respectively.  

In the proposed method, the time shifts of the aperture domain data are derived 

from the autocorrelation function. The main difference between the proposed and 

conventional methods is that in the former the autocorrelation processing is applied 

before beam summation. 

2.2.2 Auto-Correlation Based Method 

For a target moving with a constant velocity, which results in a constant 

arrival- time shift between each firing, the baseband received signal for an element 

located at nX  at time i  is given by 

0( , ) ( ( ))exp( 2 ( ) )n n nr i X A i X j f i X       ,            (2-8) 

where A  is the envelope of r , 0f  is the center frequency of the emitted signal, i  

is the pulse index, and   is an arbitrary phase factor that depends on the depth. The 

discrete first-lag autocorrelation of aperture domain data is  

1
*

1

1
( , ) ( , ) ( 1, )

1

M

n n n

i

R i X r i X r i X
M





  

 ,                (2-9) 

where * denotes the complex conjugate and M  is the number of firings, which is 

used for slow-time temporal averaging. The phase of ( , )nR i X  equals the phase 

difference of two consecutive echoes: 
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and the time delay profile   is constructed as 
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By applying the first-order linear regression model using least-squares fitting to 

 , both 0a  and 
1a  in (2-7) can be estimated and then used to calculate the axial 

and lateral velocities according to 

PRI

ca
vaxial

2
ˆ 0 

                       (2-12) 

and  

PRI

cRa
vlateral


 1ˆ

,                   (2-13) 

respectively. The vector sum and phase angle of these two velocity components 

correspond to the estimated vector velocity  

22
ˆˆˆ

lateralaxial vvv 
                   (2-14) 

and the estimated Doppler angle 

)
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ˆ
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v
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,                 (2-15) 

respectively. 
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Fig. 2-2. Signal flow for the vector velocity estimator based on the processing of aperture 

domain data. 

The signal processing in the proposed technique is shown schematically in Fig. 

2-2. After the echo signal is received and digitized by the A/D converter, the received 

RF data are demodulated down to baseband. The baseband beam former applies the 

appropriate dynamic receive delays and phase rotations to the baseband data, and then 

the autocorrelation functions of the aperture domain data for different firings are 

calculated for all channels. First-order linear regression is applied to the estimated 

phases of the autocorrelation functions as a function of channel index, with the axial 

and lateral velocities then estimated based on the zeroth- and first-order coefficients, 

respectively. Both the estimated vector velocity and the estimated Doppler angle can 

subsequently be obtained using (2-14) and (2-15), respectively. 
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2.2 ESTIMATION ERROR ANALYSIS 

2.2.1 Axial Velocity Estimation 

The measurement errors of   corresponding to different channels are 

assumed to be independently and identically distributed with a zero mean and a  

standard deviation (SD) of  . The Cramér-Rao lower bound (CRLB) [46] of the SD 

is  
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)12(2
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,           (2-16) 

where the SNR is for the channel,  and the   is the correlation coefficient between 

the signals corresponding to two consecutive firings. For an N -channel system the 

variance of the zeroth-order term in the linear regression [47] (for nx  with a zero 

mean) is  
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where X  is the mean of nX .  

The SNR for the conventional method that uses N-channel beam-summation data 

is N times larger than that for a single channel. According to (2-16) and (2-17), the 

improvement ratio   defined as the ratio of the lower bounds of the SDs for the 

conventional and proposed methods is  
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The improvement ratio   as a function of the SNR for different correlation 

coefficients is shown in Fig. 2-3 for a system with 64 channels. The nominal 

correlation coefficient for blood flow estimation is typically 0.98 [48]. With 98.0 , 

  is larger than 1 when SNR is higher than –1.93 dB. Fig. 2-3 shows that the 

improvement ratio   degrades as SNR decreases, and hence the conventional 

method is the better choice when the SNR is low. Since the SNR is related to the size 

of the aperture, this result indicates that using multiple small apertures may be inferior 

to the conventional method, which employs a single large aperture. Therefore, the 

subaperture size should be adaptively adjusted according to the SNR.  

 

Fig. 2-3. Improvement ratio   as functions of the SNR for different correlation coefficients. 

In our new approach, recursive subaperture processing using partial 

beam-summation signals at adjacent receive positions is employed to improve the 

performance when the SNR is low. This effectively produces new subaperture data 
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corresponding to a larger subaperture size, with the total number of channels being 

reduced. Fig. 2-4 shows the relations between the SNR and the optimal number of 

subapertures for different correlation coefficients. The optimal number of 

subapertures decreases as the SNR decreases, and hence the conventional method 

remains the preferred choice when the SNR is low.  

2.2.2 Lateral Velocity Estimation 

The variance of the estimated lateral velocity is proportional to the first-order 

coefficient (
1a ) in (2-7). According to the first-order linear regression model [47], its 

variance is  
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.                     (2-19) 

The ratio of the SDs of the estimated lateral and axial velocities according to 

(2-12), (2-13), (2-17), and (2-19) is defined as the lateral-to-axial estimation error 

ratio  : 
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              (2-20) 

The value of proposed  is 10.8 for a 64-element transducer array with a pitch of 

0.3 mm and an R of 3 cm. For larger N, (2-20) can be approximated as 
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   (2-21) 
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Fig. 2-4. Optimal number of subapertures as functions of the SNR for different correlation 

coefficients. 

where 2a denotes the aperture size, and #F  is the F-number defined as the ratio of 

the focal depth to the aperture size. That is, the error of the estimated lateral velocity 

component is proportional to the F-number. The ratio of the CRLBs [49] of the SDs 

of the axial and lateral velocities in the speckle tracking method becomes 

tcaf

R




2

5

trackingspeckle
 ,                  (2-22) 

where t  is a constant defining the pulse length. The value of 
trackingspeckle

  is 10.2 

for the parameters used in the present study.  



 

29 

 

2.3 SIMULATION INVESTIGATION 

2.3.1 Simulation Methods 

The proposed method was tested using simulation data generated by Field II [50]. In 

the simulations, the transducer comprised a 64-element linear array with a center 

frequency of 5 MHz and an aperture size of 19.2 mm. The sample volume was located 

at the focal point, which was 30 mm from the transducer. The corresponding 

pulse-echo -6 dB beam width and pulse witdh was 636 and 554 μm at the focal point. 

The sound velocity was 1500 m/s, the sampling frequency was 50 MHz, the pulse 

length was 1.37 μs, the pulse repetition frequency was 5 kHz, and white Gaussian 

noise was added to the received RF data to produce a SNR of 25 dB. Randomly 

generated scatterers were placed in the sample volume of the sound field in the x-z 

plane at a density of 100 scatterers/mm2. These scatterers flowed at a constant 

velocity according to the predetermined Doppler angle and the displacement between 

two consecutive firings. All the echo signals were used for estimating the axial and 

lateral velocities according to (2-12) and (2-13), respectively, with the vector velocity 

and Doppler angle estimated using (2-14) and (2-15), respectively. The number of 

firings ( M ) was selected as a compromise between the data acquisition time and 

estimation errors. Fig. 2-5 shows the relations between the SD of the estimated vector 

velocity normalized by the ideal value (of 20 cm/s) and the number of firings for 

Doppler angles of 0°, 45°, and 90°. Based on these results, we decided to use 16 

firings in this study.  

2.3.2 Simulation Results 

An illustration of a first-order linear regression processing using simulation data is 

shown in Fig. 2-6. The theoretical velocity and Doppler angle for the data are 30 cm/s 

and 45°, respectively, and hence both the axial and lateral velocity components are 

21.2 cm/s. Both the estimated and fitted curves are shown in the figure with black and 

gray lines, respectively. The   according to (2-10) is estimated as a function of 
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Fig. 2-5. Effect of the number of firings on the normalized SD for different Doppler angles. The 

vector velocity was 20 cm/s. 

 

Fig. 2-6. Illustration of the phase differences as functions of the nx  for a simulation data. The 

theoretical velocity and Doppler angle for the data are 30 cm/s and 45°, respectively.  
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nX , then using (2-11), (2-7), (2-12), and (2-13), the estimated axial and lateral 

velocity components are 21.1 and 23.1 cm/s, respectively. 

Fig. 2-7 shows the relations between the SD of the estimated axial velocity and 

the Doppler angle for the proposed and conventional methods. This figure also shows 

the SD for the lateral velocity estimated using the proposed method. As a comparison, 

the predicted value using (2-20) for the lateral velocity (gray line) estimated using the 

speckle tracking method [29] is also shown. The results were normalized by the ideal 

value (of 20 cm/s). This figure shows the data for Doppler angles from 0° to 90°with a 

step size of 15°, with 30 data sets used at each angle to produce the means and SDs. 

As predicted, our method is superior to the conventional method for axial velocity 

estimation, and exhibits lower variance for axial velocity estimation than for lateral 

velocity estimation.  

 

Fig. 2-7. Simulation results. Estimation errors as functions of the Doppler angle for the axial 

and lateral velocities using the proposed technique. For comparison, the results for estimating 

the axial velocity using the conventional method and the predicted values using a 

speckle-tracking method as described previously [49] are also shown. 
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(a)                          

 

 

(b) 
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(c) 

Fig. 2-8. Simulation results. (a) Normalized estimated vector velocity as a function of the 

Doppler angle. (b) Estimated Doppler angle as a function of the actual Doppler angle. (c) 

Normalized estimated vector velocity as a function of the actual velocity. The dashed line 

shows the ideal value, and the error bars indicate plus and minus one SD relative to the mean. 

The estimated vector velocities are shown in Fig. 2-8 for Doppler angles from 0° 

to 90° with a step size of 15°, and for velocities ranging from 5 to 35 cm/s with a step 

size of 5 cm/s. Fig. 2-8(a) plots the amplitude of the estimated vector velocity versus 

the Doppler angle, normalized by the ideal values. The mean and SD for the estimated 

velocity vector were 0.98 and 0.15, respectively. Fig. 2-8(b) plots the estimated 

Doppler angle versus the Doppler angle in the same format as Fig. 2-8(a). The mean 

SD of the estimated Doppler angle was 8.11°. Fig. 2-8(c) plots the amplitude of the 

vector velocity versus the actual velocity. The SDs for velocities of 5 and 35 cm/s 

were 0.25 and 0.14, respectively. The results were normalized by the ideal values. The 

dashed line shows the ideal value, and the error bars indicate plus and minus one SD 

relative to the mean. Fig. 2-8(a) shows that the accuracy of velocity estimation 

generally decreases with the Doppler angle, whereas Fig. 2-8(b) shows that the 

accuracy of Doppler angle estimation generally increases with the Doppler angle. This 
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is due to the variances being larger for the estimated lateral velocity than for the 

estimated axial velocity. Fig. 2-8(c) shows that the variance is large when estimating a 

small velocity, which is due to estimation errors resulting from small phase 

differences in the arrival data.  

2.4 EXPERIMENTAL INVESTIGATION 

2.4.1 Experimental Methods 

Experiments were performed to evaluate the efficacy of the proposed vector 

velocity estimator. Fig. 2-9 shows a schematic of the experimental setup. A 

programmable array system with 64 channels (DiPhAS, IBMT, Fraunhofer Institutes, 

Germany) was used to acquire the aperture domain data. A gelatin phantom 

containing  106-µm acid-washed  glass beads (G-4649, Sigma, St. Louis, MO) for 

speckle generation was placed in a water tank. The linear-array transducer with a 

central frequency of 5 MHz (L6/128, Acuson, Mountain View, CA) was moved along 

the x- and z-axes controlled by a 3-D positioning system so as to emulate the lateral 

and axial velocity components, respectively. In this way, 2-D constant flows were 

emulated for different Doppler angles comprising motion in the directions of the x- 

and z-axes. For each position, a complete data set (i.e., 4096 RF A-scans recorded 

from a 64-element array, where each recording represents the echo signal of 64 

independent transmitters and 64 independent receivers without any time delay applied) 

was acquired at a sampling frequency of 20 MHz. The data sets were used to 

reconstruct the aperture domain data with full dynamic focus on both transmit and 

receive. 
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Fig. 2-9. The experimental setup. 

2.4.2 Experimental Results 

 

Fig. 2-10. Experimental results. Estimation errors as functions of the Doppler angle for the 

axial and lateral velocities using the proposed technique. For comparison, the results for 

estimating the axial velocity using the conventional method and the predicted values using a 

speckle-tracking method as described previously [49] are also shown. 
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(a) 

 

(b) 

Fig. 2-11. Experimental results. (a) Normalized estimated vector velocity as a function of the 

Doppler angle. (b) Estimated Doppler angle as a function of the actual Doppler angle. The 

dashed line shows the ideal value, and the error bars indicate plus and minus one SD relative to 

the mean. 
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The parameters were similar to those for the simulations: 16 firings, and Doppler 

angles ranging from 0° to 90° with a step size of 15°. 20 independent experiments 

performed to produce the means and SDs. Comparing the experimental results shown 

in Figs. 10 and 11 with those in Figs. 7 and 8 (in the same format) reveals that the 

experimental and simulation results were generally consistent. For all Doppler angles, 

the mean errors for the axial and lateral velocities were 2.18% and 18.11%, 

respectively. For comparison, the mean error for the axial velocity was 4.51% when 

using the conventional method. The mean and SD for the estimated velocity vector 

were 0.96 and 0.11, respectively. The mean SD of the estimated Doppler angle was 

6.9°. The accuracy was higher for the estimated axial velocity than for the estimated 

lateral velocity, and the accuracy of the estimated axial velocity was higher when 

using the proposed method than when using the conventional method.  

2.5 DISCUSSION AND CONCLUDING REMARKS 

This chapter has analyzed a proposed system that uses aperture domain data to 

estimate the 2-D vector velocity for an arbitrary Doppler angle. The differential time 

shifts of aperture domain data between two consecutive firings caused by the flow can 

be estimated by the phase shifts of the baseband data, which are determined using an 

autocorrelation function at each channel. The performance of the estimator can be 

improved by temporal or spatial averaging (i.e., a selected Doppler range gate) so as 

to reduce the influence of system noise. When the SNR is higher than –1.93 dB, the 

accuracy of the estimated axial velocity is higher for the proposed method than for the 

conventional method. The simulation and experimental results show that axial 

velocity estimation is more accurate than lateral velocity estimation. The results also 

show that the ratio of the variances of the estimated axial and lateral velocities was 

consistent with the results of Walker and Trahey [49], whereas the means of the 

vector velocities and the Doppler angles were underestimated in the experimental 

results. The underestimation of the lateral velocity component (which was responsible 

for the other underestimations) did not occur in experiments using a wire phantom as 

a moving source, but only when using the speckle-generating phantom. As discussed 
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in[3, 4], measurements of the arrival time from diffuse scatterers underestimate the 

actual arrival-time function determined from a Fresnel integral. As a result, the 

arrival- time function (2-1) related to the lateral extent of the insonifying beam is 

underestimated, resulting in the estimation errors evident in the present experimental 

results. The lateral velocity estimated using parameter 
1a  in (2-7) is too low due to 

the arrival-time function (2-1) being underestimated along the array direction. The 

arrival- time function was not underestimated in the simulations using Field II. Since 

the underestimation of arrival time is noteworthy when the beam is broad [3], the 

randomly generated scatterers placed in the x-z plane with tight focus in lateral extent 

did not influenced by the phenomenon. Furthermore, the Doppler angle in the 

experimental results also tended to be underestimated due to this underestimation of 

the lateral velocity component.  

The accuracy of the proposed method is related to the number of system 

channels, and using (2-17) and (2-19) with the assumption that the number of 

channels is sufficiently large ( 8N ), the variance of the estimated axial and lateral 

velocities can be approximated by 
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                     (2-23) 

These relationships indicate that the accuracies of both the estimated axial and 

lateral velocities improve with the number of system channels, with this dependence 

being stronger for the lateral velocity.  

The implementation of the proposed method requires splitting the receive 

aperture into (smaller) subapertures that widen the receive beam and thereby degrade 

the lateral spatial resolution and sensitivity. However, since the effective beam is the 

multiplication of transmit and receive beams, it is not as wide as the receive beam due 

to the full aperture size being used for transmit. As a result, although the lateral spatial 
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resolution is slightly degraded compared to using the entire aperture for both transmit 

and receive, the effective resolution of the aperture is still sufficient for estimating the 

lateral velocity. 

The proposed method requires N  autocorrelators due to the use of N  

subapertures for velocity estimation, compared with the conventional color Doppler 

method requiring only one autocorrelator. Thus, the system complexity increases with 

the number of subapertures, and hence determining the optimal number of 

subapertures requires both the system complexity and the estimation accuracy to be 

taken into account. A practical approach to achieving a good trade-off between the 

system complexity and the estimation accuracy is adaptively adjusting the number of 

subapertures according to the SNR given an upper limit for the number of 

subapertures. 

The experiments in this chapter did not being performed with real flow. The 

minimum PRI specified by the DiPhAS programmable array system is 3 ms, which is 

quite high due to the large amount of aperture domain data. The maximum velocity 

that can be detected without aliasing is )4(max PRIv   , and hence the maximum 

flow velocity that could be detected in this study was about 0.6 cm/s (with 4M ). 

This long data acquisition time makes it infeasible for real flow experiments. 

Therefore, the vector velocity was only estimated for a constant flow in both 

simulations and experiments.  

For real flow estimation, the signal scattered from blood is degraded by signals 

scattered from the stationary or slowly moving tissue. The robustness of the flow 

estimation technique depends on sufficient clutter rejection. Therefore, wall filters for 

the proposed technique should be used in parallel for all individual subapertures over 

slow-time, and this highly increases the system complexity. Another concern is that a 

wall filter degrades the performance of the proposed method due to spatial resolution 

degradation resulted from a small receive subaperture size. A trade-off between 

performance and system complexity should be taken into account for the wall filter 
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design. To simplify the design, a method [51] using direct component removal as a 

high pass filter has been suggested, and the signal from slowly moving tissue can be 

suppressed by down mixing the signal with the estimated mean tissue frequency prior 

to the wall filter. Temporal averaging schemes (using (2-9)) and spatial averaging 

schemes (using the Doppler range gate) can be used to reduce the estimation errors 

due to nonnegligible velocity gradients and the presence of turbulence. Future studies 

should investigate the performance and robustness of the proposed technique in the 

regions where temporal or spatial velocity gradients are present.  

The estimation accuracy for the proposed method is expected to be inferior due 

to velocity gradients, stationary or moving clutters, and at low SNR. However, since 

both blood and tissue are speckle generating objects, another feasible application for 

the proposed method is for tracking tissue motion such as heart wall motion detection 

or elastography. The proposed method should be suitable for these applications, 

because the wall filter is no longer required and the performance is improved for a 

higher SNR. The presence of phase aberration (i.e., time delay errors due to sound 

velocity inhomogeneities) is expected to degrade both the spatial resolution and 

sensitivity of the proposed technique. This could be improved by combining 

aberration-correction techniques using aperture domain processing, such as 

correlation-based methods [3, 4].  

The first advantage of the proposed method is that it requires fewer firings (e.g., 

4 to 16, depending on the SNR) than conventional methods (e.g., typically 64 firings 

for the spectral broadening technique) for estimating velocity vectors. The second 

advantage is that it is less computationally demanding than other methods (e.g., 

speckle tracking). The third advantage is that the proposed method does not increase 

the system complexity for transmit beam formation (e.g., spatial quadrature). The 

fourth advantage is that the use of the entire time-shift profile improves the accuracy 

of the estimated axial velocity compared with that of the conventional Doppler 

technique.  
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CHAPTER 3 PERFORMANCE EVALUATION 

OF COHERENCE-BASED ADAPTIVE 

IMAGING 

Sound-velocity inhomogeneities degrade both the spatial resolution and the 

contrast in diagnostic ultrasound. We previously proposed an adaptive imaging 

approach based on the coherence of the data received in the channels of a transducer 

array, and tested it on phantom data. In this study the approach was tested on clinical 

breast data, and compared with a correlation-based method that has been widely 

reported in the literature. The main limitations of the correlation-based method in 

ultrasonic breast imaging are the use of a near- field phase-screen model and the 

integration errors due to the lack of a 2D array. In contrast, the proposed 

coherence-based method adaptively weights each image pixel based on the coherence 

of the receive-channel data. It does not make any assumption about the source of the 

focusing errors and has been shown to be effective using 1D arrays. This study tested 

its in vivo performance using clinical breast data acquired by a programmable system 

with a 5 MHz, 128-channel linear array. Twenty-five cases (six fibroadenomas, ten 

carcinomas, six cysts, and three abscesses) were investigated. This chapter explores 

the contrast and other general characteristics of the GCF technique, and is organized 

as follows: In Section 3.1, the definition of GCF is given. Section 3.2 describes the  

basic principles of the GCF-weighting technique. The experimental methods for the 

GCF-weighting method are described in Section 3.3. Section 3.4 presents the 

experimental results, and the results are then discussed in Section 3.5. The chapter 

concludes in Section 3.6. 

3.1 GENERALIZED COHERENCE FACTOR (GCF) 

The GCF is calculated using the Fourier spectrum of the aperture domain data, 

which are the data received in individual array channels after the application of 
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focusing delays but prior to beam summation. The corresponding Fourier spectrum is 

obtained by performing a discrete Fourier transform across the array at each time (i.e., 

depth):  

( ) ( , )
FT

nx t p k t ,                         (3-1) 

where p(k, t) is the Fourier spectrum with spatial frequency index k and time variable t. 

As described in [12], the spectrum can be viewed as an approximation of multiple 

parallel receive beams centered at the transmit beam direction. The definition of the 

CF described in (1-14) can also be expressed as follows:  
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The numerator of (3-2) is the energy of the DC component of the spectrum, and 

the denominator is the total spectral energy. The DC component represents the signals 

received from the transmit beam direction (i.e., on-axis component), and the other 

components represent the signals from other angles (i.e., off-axis components). 

Adaptive weighting using CF is feasible for point- like targets. However, for 

diffuse scatterers (i.e., speckle-generating objects), part of the mainlobe signal appears 

within the low-frequency region. Therefore, using the ratio of the DC energy to the 

total energy as a weighting factor underestimates the coherence. The GCF was 

proposed to take this into account [16], and is thus defined as the ratio of the energy 

within a certain low-frequency region to the total energy:  
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where M0 denotes the prespecified cut-off frequency in the spatial frequency 

domain. Note that the CF is the special case of the GCF with M0=0. 

3.2 SIGNAL PROCESSING PROCEDURES 

The signal processing procedures we employed are shown schematically in Fig. 

3-1. After the echo signal is received and digitized by the A/D converter, the received 

RF data are demodulated down to baseband and the baseband beam former applies 

geometric focusing delays and phase rotations to the baseband data. The B-mode 

image is then obtained by performing beam summation across the array with 

prespecified apodization. The GCF is calculated for the specific configuration using 

the delayed baseband data across the aperture at all ranges prior to beam summation. 

Note that a baseband beam former is necessary fot the GCF estimation. The amplitude 

of the beam sum is then simply multiplied by the corresponding GCF: 

weighted GCFy y  ,                         (3-4) 

The weighted beam-sum data are then stored in a buffer for further signal processing, 

scan conversion, and display. 

 

Fig. 3-1. Signal processing procedures of the proposed GCF-weighting technique. 
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3.3 CLINICAL EXPERIMENTS SETUPS 

Experiments were performed to evaluate the efficacy of the proposed method in 

clinical breast imaging. Clinical data of the female breast were collected in the 

ultrasonic consulting room of the Taipei Veterans General Hospital by one of the 

authors (Y.-H. Chou) after patients had provided informed consent. The 25 included 

patients, aged from 23 to 89 years, presented with six fibroadenomas, ten carcinomas, 

six cysts, and three abscesses. A schematic of the experimental apparatus is shown in 

Fig. 3-2, which included a mechanical compression stage similar to that used in X-ray 

mammography to stabilize the breast during data acquisition. A programmable 

imaging system with 64 system channels (DiPhAS) was used to acquire the aperture 

domain data. The linear transducer array had a center frequency of 5 MHz, a -6 dB 

bandwidth of 4.1 MHz and 128 channels (L6/128) at a pitch of 0.3 mm. A complete 

data set was obtained from each patient (i.e., 128 128 RF A-mode scans recorded 

from the 128-element array, where each A-mode scan represents the echo signal of a 

particular transmit/receive combination) at a sampling rate of 20 MHz. Each complete 

data set took approximately 3 s to acquire. The acquired data sets were used to 

reconstruct the aperture domain data with full dynamic focus on both transmit and 

receive. To confirm that no severe motion occurs during data acusition, the B-mode 

image is compared to a pre-scan image is also acquired using real-time imaging of 

DiPhAS. An f-number of 1 was applied for aperture control. All images displayed 

here are in linear gray scale with a dynamic range of 60 dB and are shown in a linear 

scan format. The step size for the linear scan was 0.15 mm (i.e., half the pitch of the 

transducers). B-mode images are formed by applying transmit and receive focusing 

delays before beam summation, and multiple imaging methods can be compared with 

one another using the same data set.  
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Fig. 3-2. Clinical data-acquisition apparatus. 

3.4 EXPERIMENTAL RESULTS  

3.4.1 Cut-off Frequency M0 

In the GCF technique, cut-off frequency M0 should be specified so as to achieve 

optimal performance. Both the contrast ratio (CR) and contrast-to-noise ratio (CNR) 

were used in the experiments to evaluate the effects of varying M0. The CR is defined 

as the ratio between the mean value in a background region to that in a region of 

interest (ROI) [4]. The CNR is defined as the ratio between the CR and the SD of the 

image intensity in a background region [5]. Fig. 3-3(a) shows an original image 

without application of the GCF-weighting method, and Figs. 3-3(b)–(f) show the 

GCF-weighted images with M0 ranging from 0 to 4. Note that M0=0 represents the 

case of using the CF. The background region and ROI used to calculate CRs and 

CNRs are indicated in Fig. 3-3(a) by the black and white boxes, respectively. The 

ROI in this case is a cyst. Note that in all cases the contrast is clearly improved and 
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the background noise is suppressed. Figs. 3-4(a) and (b) show the CR and CNR after 

GCF weighting as functions of M0, respectively. Fig. 3-4(a)  

 

Fig. 3-3. Effects of cut-off frequency M0 on the images of a a cyst, displayed with a dynamic 

range of 60 dB. (a) Original image. (b)–(f). GCF-corrected images for M0 values of 0 (b), 1 (c), 

2 (d), 3 (e), and 4 (f). 
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shows that the CR was improved in all cases, decreasing as M0 increased. When the 

background-intensity variations are taken into account, Fig. 3-4(b) shows that the 

CNR was not improved when M0=0. Nevertheless, with M0≧1, CNR improvement is 

again demonstrated. Specifically, the optimal CNR was achieved at M0=3 in this case. 

The results indicate that using CF as a weighting index can effectively increase the 

CR. However, CF also gives rise to strong intensity variations and degrades the CNR. 

This is also illustrated in Fig. 3-3(b), where the CF-weighting technique introduced 

artifactual black holes in the background region, which in turn affect the detection of 

an ROI. Based on these results, M0=3 was used in the subsequent investigations 

(which are described below). 

 

Fig. 3-4. Values of CR (a) and CNR (b) for the specimen shown in Fig. 3-3 as functions of M0. 

3.4.2 Cyst 

The sonogram needs to be interpreted accurately in order to avoid unnecessary 

biopsies and to differentiate a cyst from a solid mass. Fig. 3-5 shows images of a cyst 

in a 66-year-old female patient. The background and the ROI regions used in the CR 

and CNR calculations are indicated in Fig. 3-5(a) by the black and white boxes, 

respectively. Fig. 3-5(a) shows the original image, Fig. 3-5(b) shows the image  
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Fig. 3-5. Images of a cyst in a 66-year-old woman, displayed with a dynamic range of 60 dB: 

original B-mode image (a), and images obtained using the correlation-based method (b) and the 

GCF-weighting method (c). (d) shows the scan-line data along the gray dotted lines shown in (a) 

and (c) using solid and dashed lines, respectively. 

obtained using the correlation-based method (as a reference) [3, 4], and Fig. 3-5(c) is 

the image obtained with adaptive compensation using GCF weighting. A single 
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aberration profile (infinite-sized isoplanatic patch) is used to correct the entire image 

for the correlation-based method. The aberration profile is calculated using the peak 

of the cross correlation with the linear components removed. The CRs and CNRs 

were 20.97 dB and 3.07 for the original image, 20.52 dB and 2.95 for the 

correlation-based method, and 33.53 dB and 4.33 for the GCF-weighting method. 

With the correlation-based method, the CR and CNR were slightly degraded: by 0.44 

dB and 3.85%, respectively. This may be due to the phase aberrations in the breast 

being more distributed, and aberrator integration errors may be present with the 1D 

array. In contrast, the improvements in the CR and CNR using the GCF-weighting 

method were 12.56 dB and 40.97%, respectively. The original image shows an 

indistinct internal echo within the cystic mass, whereas the GCF-weighted image 

shows that the signal within the cystic mass was effectively suppressed and that the 

CR was enhanced. Fig. 3-5(d) shows the scan- line data along the gray dotted lines 

shown in Figs. 3-5(a) and (c). The results also demonstrate the efficacy of effective 

sidelobe reduction using GCF-weighting method in the ROI region while the 

background noise is just slightly increased. The margin of the cyst was more distinct 

than that in the original image. These results illustrate the significant improvement in 

contrast and boundary definition in this case.  

3.4.3 Fibroadenoma 

Fig. 3-6 shows images of a fibroadenoma lesion in a 42-year-old female patient. 

The background and the ROI regions used in the calculation of the CR and CNR are 

indicated in Fig. 3-6(a) by the black and white boxes, respectively. Fig. 3-6(a) shows 

the original image, and Figs. 3-6(b) and (c) show the corrected images obtained using 

the correlation-based method and the GCF-weighting method, respectively. The CRs 

and CNRs were 16.92 dB and 2.76 for the original image, 17.51 dB and 2.82 for the 

correlation-based method, and 25.73 dB and 3.67 for the GCF-weighting method. The 

CR and CNR improved by 0.58 dB and 2.36% with the correlation-based method and 

by 8.81 dB and 33.07% with the GCF-weighting method. The original image and the 

image obtained using correlation-based method show poor boundary definition. 
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However, the use of the GCF-weighting method noticeably improves the contrast and 

boundary definition in this case. In spite of these improvements, the suppression of 

the echo signal in the ROI region reduces the delineation of the interior echo, 

resulting in possible confusion when differentiating a fibroadenoma (solid) from a 

cyst (liquid) – this requires further investigation. Nonetheless, in this case the lesion is 

detected as a fibroadenoma without confusion due to the boundary echogenicity. 

Typically, a cyst has brighter wall echoes, while the echogenicity of a fibroadenoma 

is not so strong. 

 

Fig. 3-6. Images of a fibroadenoma in a 42-year-old woman, displayed with a dynamic range of 

60 dB: original B-mode image (a), and images obtained using the correlation-based method (b) 

and the GCF-weighting method (c). 

3.4.4 Carcinoma 

Fig. 3-7 shows images of a carcinoma lesion in a 63-year-old female patient. The 

background and the ROI regions used in the calculation of the CR and CNR are 

indicated in Fig. 3-7(a) by the black and white boxes, respectively. Fig. 3-7(a) shows 

the original image, and Figs. 3-7(b) and (c) show the corrected images obtained using 

the correlation-based method and the GCF-weighting method, respectively. The CRs 

and CNRs were 13.63 dB and 2.19 for the original image, 13.80 dB and 2.23 for the 
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correlation-based method, and 21.52 dB and 2.87 for the GCF-weighting method. The 

CR and CNR improved by 0.16 dB and 1.59% with the correlation-based method and 

by 7.89 dB and 30.75% with the GCF-weighting method, respectively. Again, the 

original image shows an indistinct lesion margin. The internal echo and several 

echogenic foci indicating microcalcifications within the breast parenchyma are also 

not clearly evident. The image obtained using correlation-based method is again 

almost the same. The GCF-weighted image shows better characterization of the 

margin, enhanced delineation of the internal architecture, and enhanced conspicuity of 

microcalcifications within the breast parenchyma due to improved spatial resolution 

and contrast. 

 

Fig. 3-7. Images of a carcinoma in a 63-year-old woman, displayed with a dynamic range of 60 

dB: original B-mode image (a), and images obtained using the correlation-based method (b) 

and the GCF-weighting method (c). 

3.4.5 Abscess 

Fig. 3-8 shows images of an abscess lesion in a 31-year-old female patient. The 

background and the ROI regions used in the calculation of the CR and CNR are 

indicated in Fig. 3-8(a) by the black and white boxes, respectively. Fig. 3-8(a) shows 

the original image, and Figs. 3-8(b) and (c) show the corrected images obtained using 



 

52 

 

the correlation-based method and the GCF-weighting method, respectively. The CRs 

and CNRs were 22.20 dB and 3.73 for the original image, 22.85 dB and 3.80 for the 

correlation-based method, and 32.11 dB and 4.59 for the GCF-weighting method. The 

CR and CNR improved by 0.65 dB and 1.83% with the correlation-based method and 

by 9.91 dB and 23.10% with the GCF-weighting method, respectively. The original 

image shows a well-circumscribed hypoechoic mass with internal echogenic debris, a 

slight posterior acoustic enhancement, and indistinct calcification. Again, the image 

obtained using correlation-based method is almost the same. The GCF-weighted 

image shows a clearer lesion margin and enhanced delineation of the internal 

architecture due to improvement of the contrast.  

 

Fig. 3-8. Images of an  abscess in a 31-year-old  woman, displayed with a dynamic range of 60 dB: 

original B-mode image (a), and images obtained using the correlation-based method (b) and the 

GCF-weighting method (c). 

3.4.6 Milk of Calcium 

Fig. 3-9 shows images of a milk of calcium in a cyst lesion in a 25-year-old 

female patient. Fig. 3-9(a) shows the original image, and Figs. 3-9(b) and (c) show the 

corrected images obtained using the correlation-based method and the GCF-weighting 
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method, respectively. The contrast between the milk of calcium and the tissue 

improved by 0.05 dB for the correlation-based method and by 4.47 dB for the 

GCF-weighting method. The lateral and axial –6-dB widths of the milk of calcium 

object were 0.51 and 0.39 mm in the original image, 0.55 and 0.41 mm in the 

correlation-based image, and 0.43 and 0.32 mm in the GCF-weighted image, 

respectively. The GCF-weighting method improved both the spatial resolution and the 

contrast in this case, which in turn helped in the detection of calcification.  

 

Fig. 3-9. Images of a milk of calcium in a cyst in a 25-year-old woman, displayed with a 

dynamic range of 60 dB: original B-mode image (a), and images obtained using the 

correlation-based method (b) and the GCF-weighting method (c). 

3.5 DISCUSSION 

The CR and CNR values obtained with the correlation-based and GCF-weighting 

methods are listed in Table 3-1. The mean values for the CR and CNR improvements 

were 0.42 dB and 3.4% for the correlation-based method and 8.57 dB and 23.20% for 

the GCF-weighting method. It should be noted that whilst the CR and CNR are 

widely reported as performance indices in the literature and are directly related to 

fundamental characteristics of an image, their exact values may change with the 

selected ROI and may not be directly related to diagnostic outcomes. Therefore, these 

images were also evaluated by an experienced clinician (Y.-H. Chou) using the 

following scoring system: 2+, significant improvement; 1+, moderate improvement; 0, 
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no noticeable effects; 1–, slight degradation; and 2–, significant degradation. In 

general, application of the GCF-weighting method improved the image quality in all 

the cases assessed in this study. The improvement in the contrast was more significant 

for a liquid lesion (e.g., a cyst) than for a solid lesion (e.g., a fibroadenoma), and the 

improvement in the boundary definition makes it easier to detect a malignant tumor 

(e.g., a carcinoma).  

The complete data set was used for clinical data acquisition in this study. Some 

inevitable drawbacks for beam formation using the complete data set including poor 

signal-to-noise ratios and motion artifacts resulted from long data acquisition time 

limit the practical application. However, using the complete data set is helpful for 

dynamic transmit focusing and therefore improves the coherence of the received 

channel data. For clinical application, using multi-zone transmit focusing may achieve 

an optimal compromise among these factors.  

Although the correlation-based method is one of the most popular adaptive 

imaging methods reported in the literature, several problems were encountered when 

we applied this to breast imaging in this study. The estimated time delays are affected 

by several factors, including the cumulative error along the array direction, the 

signal-to-noise ratio, the correlation between adjacent channels, the kernel size, and 

the aberrator integration errors of a 1D array [6, 49, 52]. In addition to the above 

problems, the distributed sound-velocity inhomogeneities also represent a uniquely 

difficult problem in adaptive breast imaging, as illustrated in Fig. 3-10. The image 

shown in Fig. 3-10(a) is displayed without any aberration correction, and Fig. 3-10(b) 

plots the estimated time-delay errors as a function of the channel index at the image 

points corresponding to the boxes marked in Fig. 3-10(a), which are located along the 

same beam and are spaced by 7.7 mm. The time delays were estimated according to 

previously described principles [4]. Significant variations in the estimated time delays 

are clearly evident, and these limit the performance of the correlation-based method. 

The depth dependency of the estimated time delay may result from breast tissue 
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comprising a heterogeneous mixture of fatty, fibrotic, connective, and glandular 

tissues.  

Table 3-1. Summary of the CR and CNR values. 

 
  CR  CNR 

CR  

improvement  

(dB) 

CNR  

improvement 

 (%) 

Subjective 

score 

Patient 

no. 

Age  

(years) 

Lesion 

type 
Original 

Corr. 

based 
GCF Original 

Corr. 

based 
GCF 

Corr. 

based 
GCF 

Corr. 

based 
GCF GCF 

1 53 Cyst 38.84 38.51 53.19 5.84 5.82 6.96 –0.33 14.34 –0.28 19.18 2+ 

2 49 Cyst 42.00 41.58 57.05 6.09 6.37 7.08 –0.41 15.04 4.51 16.19 2+ 

3 59 CA 26.00 26.53 36.70 4.03 3.99 4.73 0.52 10.69 –0.88 17.43 1+ 

4 28 FA 16.88 17.16 23.48 3.05 2.97 3.77 0.28 6.59 –2.73 23.37 1+ 

5 63 CA 13.63 13.80 21.11 2.19 2.23 2.85 0.16 7.47 1.59 28.09 2+ 

6 79 CA 10.39 11.05 19.57 1.53 1.59 2.46 0.65 9.17 3.85 60.94 2+ 

7 66 Cyst 20.97 20.52 33.53 3.07 2.95 4.33 –0.44 12.56 –3.85 40.97 2+ 

8 43 CA 4.35 4.84 7.67 0.66 0.73 0.96 0.49 3.32 11.65 45.41 1+ 

9 33 Abscess 14.11 14.57 20.05 2.16 2.23 2.59 0.46 5.93 2.96 19.58 1+ 

10 59 CA 16.37 17.94 24.87 2.58 2.79 3.29 1.56 8.50 7.92 27.24 2+ 

11 63 FA 15.32 15.28 20.59 2.67 2.65 2.99 –0.03 5.27 –0.90 12.05 1+ 

12 46 FA 15.74 16.12 20.94 2.47 2.53 2.89 0.38 5.20 2.30 16.94 1+ 

13 63 Abscess 12.99 13.05 20.68 2.20 2.15 3.05 0.06 7.68 2.60 38.29 2+ 

14 89 CA 12.22 12.26 19.43 1.70 1.73 2.04 0.03 7.20 1.90 20.04 1+ 

15 23 FA 14.19 14.07 18.40 2.54 2.65 2.92 –0.11 4.20 4.28 14.94 1+ 

16 50 CA 21.07 22.07 30.27 3.55 3.69 4.21 0.99 9.19 3.86 18.36 1+ 

17 42 FA 16.36 16.91 24.12 2.67 2.73 3.44 0.54 7.75 2.23 28.97 2+ 

18 25 Cyst 15.45 19.61 27.09 2.56 3.12 3.18 4.16 11.63 22.09 24.50 2+ 

19 45 CA 21.56 21.18 29.26 3.55 3.29 3.92 –0.37 7.70 –7.26 10.29 1+ 

20 45 CA 15.85 16.06 21.33 2.98 3.07 3.46 0.21 5.48 3.17 16.17 1+ 

21 47 Cyst 23.10 23.83 34.91 3.53 3.74 4.08 0.73 11.81 6.02 15.62 1+ 

22 55 FA 24.18 24.33 33.58 3.80 3.86 4.31 0.14 9.39 1.52 13.30 1+ 

23 58 Cyst 24.43 24.20 35.70 3.45 3.83 4.32 –0.22 11.26 11.07 25.18 1+ 

24 31 Abscess 22.20 22.85 30.98 3.73 3.80 4.37 0.65 8.78 1.83 17.12 1+ 

25 57 CA 26.51 26.92 34.83 4.14 4.33 4.56 0.40 8.31 4.51 10.02 2+ 

* CA=carcinoma, FA=fibroadenoma, Corr.=Correlation 



 

56 

 

The arrival time and energy level reportedly vary with breast sample thickness 

[53], and the correlation length of the aberration profile in breast tissue varies with 

age and body type [53-55]. It is therefore to be expected that the near- field 

phase-screen model is inaccurate, resulting in poor breast imaging when using the 

correlation-based method. It has also been reported that waveform distortion is severe 

and sidelobes are high for breast tissue, primarily because it is a highly refracting and 

heterogeneous medium [53, 56-58]. Therefore, adaptive sidelobe-reduction techniques, 

such as the GCF-weighting method investigated in the study, are of particular interest 

since they do not make any assumptions regarding the origin of the sidelobes. As 

shown in this chapter, application of the GCF-weighting method significantly 

improves the contrast and boundary definition for cyst and solid masses. We have also 

demonstrated that the GCF-weighting method is more effective than correlation-based 

methods in improving the quality of images obtained from ultrasonic breast imaging 

without the use of a 2D (or 1.5D) array.  

 

(a)                                (b)  

Fig. 3-10. Estimated time-delay errors. (a) Clinical image displayed with a dynamic range of 60 

dB. (b) Corresponding estimated time-delay errors as functions of channel index at the imaging 

points indicated in (a). 
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This chapter has focused on reducing sidelobe components from imperfect 

focusing along lateral direction using 1D array. The presence of a 2D array can extend 

the method for reducing sidelobe components along elevational direction provided a 

sufficient elevationally spectral resolution (i.e., a sufficient large aper ture size and 

number of channels along the elevational direction). The GCF can be estimated as the 

ratio within a certain low-frequency region of the k-space data to the total energy, 

where the k-space data are obtained by applying 2D discrete Fourier transform to all 

received channels at each time. For a 1.5D array (or an array without sufficient large 

aperture size and number of channels along the elevational direction), the GCF can be 

estimated from the channel data which are partial beamsumed along the elevational 

direction (as using a 1D array).  

3.6 CONCLUDING REMARKS 

In this chapter we have experimentally evaluated an adaptive imaging approach 

for reducing focusing errors in ultrasonic imaging. This method is based on coherence, 

and corrects focusing errors by suppressing unwanted sidelobes. The presented 

experimental results demonstrate that the image quality was noticeably improved in 

all of the cases investigated using a 1D array.  
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CHAPTER 4 COHERENCE WEIGHTING 

FOR HIGH-FRAME-RATE ADAPTIVE 

IMAGING 

Some success has been demonstrated in the extensive studies of adaptive 

imaging, but these approaches are generally not suitable for high-frame-rate (HFR) 

imaging where broad transmit beams are required. In this study, we propose an 

effective adaptive imaging method suitable for HFR imaging based on CF weighting 

and the minimum-variance-distortionless-response (MVDR) method. The CF is an 

index of focusing quality estimated from receive-channel data in which the amplitude 

of each image pixel is weighted by the corresponding CF so as to reduce the 

unwanted sidelobes. Direct implementation of CF weighting in HFR imaging does not 

provide satisfactory results because the broad transmit beams required for HFR 

imaging reduce the accuracy of CF calculations. In this study, we alleviated this 

problem by applying the MVDR method. We test the proposed method with the 

synthetic transmit aperture method where only eight firings are required to form an 

image. Both simulations and clinical breast imaging data were used, and the results 

demonstrate that the proposed method is effective at improving the image quality.  

 This chapter is organized as follows: Sections 4.1 and 4.2 describe the basic 

principles of HFR imaging and the proposed method, respectively. Sections 4.3 and 

4.4 present the simulation and experimental results, respectively, and the results are 

discussed and conclusions are drawn in Section 4.5. 

4.1 HIGH FRAME RATE ULTRASOUND IMAGING  

 

The round-trip propagation time fundamentally limits the acquisition time of 

each image frame in ultrasound imaging. To obtain images with a higher frame rate, 
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using a broad transmit beam with a parallel receive-beam formation is essential to 

effectively decrease the total number of firings and thereby shorten the acquisition 

time of each frame. A broad transmit beam can be generated using single-element 

firing, plane-wave excitation, a defocused beam, or a limited-diffraction beam on 

transmit. Although these methods can increase the frame rate many-fold, a broad 

transmit beam directly degrades both the spatial and contrast resolutions of the image. 

Furthermore, the SNR of the images is degraded due to the absence of transmit 

focusing.  

A retrospective focusing method named the synthetic-transmit-aperture (STA) 

imaging technique [59] is introduced here to perform dynamic transmit focusing using 

the channel data from multiple firings. At each firing, all receive elements record the 

echoes from a transmit aperture that comprises either a single array element or a 

subaperture formed using multiple array elements. The recorded signals are then used 

to form low-resolution images according to each firing by applying receive focusing. 

Dynamic transmit focusing is then applied to all subimages according to the positions 

of the transmit apertures. Finally, a two-way dynamically focused image is 

synthesized by coherently summing all the beam formed subimages. The use of an 

STA improves the spatial resolution relative to that when using a single transmit 

element, and the SNR is also improved due to the use of coherent summing. One of 

the main drawbacks of the STA imaging method, the motion artifact [60], is a less 

serious problem for HFR imaging due to a short data acquisition interval.  

4.2 Coherence-based Adaptive Imaging 

Adaptive imaging techniques for sidelobe reduction have been studied 

extensively [11, 13, 16]. These methods estimate the energies contributed by the 

on-axis and off-axis components in the receive data. The estimated on-axis 

components are preserved and the off-axis components are suppressed in the resultant 

image. The CF method [13] is one of the sidelobe reduction methods. The CF is 

defined as Equation (1-14). Equation (1-14) estimates the CF value of the receive 

data with no beam steering. To estimate the CF value with steered beams, steering 
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vector a(θ) corresponding to the phase shift of each element across the entire 

N-element array is defined as 
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where θ is the steering angle, the subscript of a is the element index, k denotes the 

wave number (k = 2π/λ, where λ is the wavelength), and d denotes the interelement 

spacing. The receive-beam sum data y for steering angle θ is 
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where the H superscript denotes the conjugate transpose operation, and the receive 

signals from all channels are represented by the vector x(t): 
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The relationship between receive signals among all channels and steering angle θ 

is illustrated in Fig. 4-1. The CF with beam steering is expressed as the ratio between 

the coherent energy after beam steering and the total incoherent energy:  
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where tr   denotes the trace operation, and Rxx(t) is the spatial autocovariance 

matrix of the receive-channel data: 

 ( ) ( ) ( )H

xx t t tR x x .                  (4-5) 

 

Fig. 4-1 Schematic diagram of the receive-channel data and the steering angle. 

4.2.3 Capon Estimator (MVDR Method) 

Beam formers conventionally use delay-and-sum operations to form receive 

beams. The associated apodization involves weighting the receive-channel data, with 

the receive-beam data being obtained by summing across the channels. Apodization 

function can be viewed as spatial filtering to control the width of the mainlobe and 

amplitudes of the sidelobes (i.e., beam shaping).  
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An adaptive beam formation approach using adaptive weighting has been 

proposed by Capon [61]. The weighting for each channel is chosen to minimize the 

output power of the array subject to the constraint that the array gain must be unity in 

the desired beam direction. Capon’s method is also known as the MVDR method. 

Optimization of the array weights can be formulated as 

 ( )
min ( ) ( ) ( ),

subject to ( ) 1,

H

xx
w t

H

t t t

t 

w R w

w a                     

(4-6) 

where w  denotes the weighting vector, and steering vector a  is a unity vector for 

cases where focusing delays have been applied previously. Then, the optimum 

weighting solution of (4-7) becomes 
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where the   –1 denotes the matrix inverse operation. The array output power P(θ, t) 

for a particular weighting vector is 

( , ) ( , ) ( ) ( , )xxP t t t t  w R w .                 (4-8) 

Combining (4-7) and (4-8) yields the estimated array output power along the 

steered beam using the MVDR weighting: 
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This output power can be used for high-resolution angle-of-arrival estimation. As 

a comparison, the estimated output power of the aforementioned steered beam method 

is 

    
2

( , ) ( , )P t y t  ( ) ( ) ( )H

xx t  a R a .            (4-10) 

4.2.4 Adaptive Imaging Using the CF and MVDR 

Broad transmit beams are used in HFR imaging to increase the frame rate. On 

the other hand, aberration correction techniques rely on the coherence of the receive 

data and hence need a focused beam (i.e., a narrow beam) on transmit. Therefore, 

aberration correction is more challenging in HFR imaging using broad transmit beams 

due to the degraded coherence and reduced SNR. As a consequence, a 

coherence-based method with high spectral resolution was explored in this study to 

estimate the coherence when imaging using broad transmit beams. In our method, 

spectral estimation as described in (4-9) is used to estimate the coherent energy of the 

receive data, and the CF estimation in (4-4) is modified to 
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.       (4-11) 

Hence, CF estimation with a high spectral resolution and low sidelobes is possible.  

In practice, since the noise is unknown, the estimated Rxx also varies rapidly with 

time. The robust estimation of Rxx requires temporal or spatial averaging, which is 

also beneficial when estimating at low SNRs resulting from the use of broad transmit 

beams. Good estimates are obtained using spatial averaging with data blocks of length 

K. The K-length block of sampled data is 
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and the corresponding estimated Rxx is 

1ˆ ( ) ( ) ( ) K

H

xx Kt t t
K

R x x
,                  (4-13) 

where K is the corresponding block length. ˆ
xxR  in (4-12) can be used to estimate the 

on-axis energy component more robustly, but this degrades the resultant spatial 

resolution due to spatial averaging. Therefore, selecting the optimal value of K 

requires an appropriate trade-off. 

Diagonal loading can also be used to improve the robustness of the method. This 

involves adding a constant ε to all the diagonal elements of ˆ
xxR  before estimating 

(4-11):  

ˆ ˆ( ) ( )xx xxt t  R R I ,                  (4-13) 

where I is the N  N identity matrix. Since the matrix inversion is performed with all 

the estimated autocovariance matrices, diagonal loading can prevent errors when ˆ
xxR  

is not a full-rank matrix [62]. The addition of diagonal loading is analogous to adding 

spatial white noise to the receive signals, so ε should be chosen appropriately based 

on the intensity of the receive data. In this study, the chosen ε was proportional to the 

total incoherent energy of the receive signal: 

 
 ( )xxtr t   R

,                  (4-15) 
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where Δ is a prespecified constant.  

Scattering effects also need to be taken into account to improve the robustness of 

coherence estimation. Previous studies have found that the signals from homogeneous 

scatterers are not totally coherent [16, 17]. Scattering affects the amplitude and phase 

of the receive-channel data and broadens the estimated intensity laterally. Therefore, 

estimating the coherent energy from scatterers requires consideration of both the 

on-axis component and the distributed energy caused by scattering effects:  

 
MVDR 1

1 1
CF ( )

ˆ ˆ( ) ( ) ( ) ( )i

H

i xx i xx

t
t tr t  

 
   
 


a R a R
,         (4-16) 

where θi is the prespecified steering angle around the beam direction, and should be 

chosen to cover the energy distribution resulting from scattering [16, 17]. Since the 

spatial resolution is higher for the Capon estimator than for the conventional spectral 

estimator (4-8), the spacing between adjacent θi’s should be narrower than the 

conventional one. However, since the computational complexity increases in 

proportional with the total number of θi’s, their number should also be selected based 

on a trade-off between accuracy and computational complexity. In practice, the 

spacing is chosen according to 
1

sin( )
4

i
N

  . 

Fig. 4-2 shows a schematic diagram of the signal processing procedures 

employed in this study. After the echo signals are received and digitized by the A/D 

converter, the received RF data are demodulated down to baseband and the baseband 

beam former applies geometric focusing delays and phase rotations to the baseband 

data. The B-mode image is then obtained by summing the beam across the array with 

prespecified apodization. The value of CFMVDR is estimated using the delayed 

baseband data across the aperture at all ranges prior to beam summation. Note that a 

baseband beam former is necessary for estimating CFMVDR. The amplitude of the 

beam sum is then simply multiplied by the corresponding CFMVDR: 
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weighted MVDR(t)=CF ( ) ( )y t y t ,                (4-17) 

where y denotes the amplitude of the beam-sum data, and yweighted denotes the 

amplitude of the beam sum weighted by CFMVDR. The weighted beam-sum data are 

then stored in a buffer for further signal processing, scan conversion, and display. 

 

Fig. 4-2. Schematic diagram of the signal processing of the proposed technique.  

4.3 SIMULATION INVESTIGATION 

Simulated ultrasound data were used to test the efficacy of the proposed 

technique. The acoustic- field simulation program Field II [50] was used to generate 

receive-channel data for each element. In the simulations, the array transducer was a 

128-element linear array with a center frequency of 5 MHz and a pitch of 0.3 mm.  
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4.3.1 Capon Estimator for a PointTtarget 

Simulated data were used to test the efficacy of the Capon estimator (4-9) with 

broad transmit beams. Plane-wave excitation (i.e., no relative transmit delays among 

transmit elements) with Hamming apodization was applied. Only the central 64 

elements of the transducer were used to generate the transmit beam. The 

receive-channel data (i.e., the recorded signal from each channel after the application 

of geometrical delays prior to beam summation) were generated and used to estimate 

the spatial energy distribution. Fig. 4-3 shows the relationship between the 

receive-channel data of the central 64 elements and the energy distributions estimated 

using the different methods. The results using the Capon estimator (4-9) are compared 

to those using the conventional estimator (4-10). The first column of Fig. 4-3 shows 

the receive-channel data, where the vertical axis represents the range and the 

horizontal axis represents the channel index. The second column of Fig. 4-3 shows the 

energy distribution estimated using the conventional estimator (4-10), where the 

vertical axis represents time and the horizontal axis represents the beam spacing in 

sin(θ) from –1/5 to 1/5. The third column of Fig. 4-3 shows the energy distribution 

estimated using the Capon estimator (4-11) with both axes defined as in the second 

column. The fourth column shows the lateral projection of the estimated energy 

distribution for the conventional and Capon estimators, where the vertical axis 

represents the intensity (on a logarithmic scale) and the horizontal axis represents the 

beam spacing. The top panels of Fig. 4-3 show the channel data and the estimated 

energy for a point target located at a range of 5 cm from the transducer. The 

receive-channel data are in-phase along the channels in this case. The estimated 

energy distributions show that the mainlobe is narrower and the sidelobes are lower 

for the Capon estimator than for the conventional method due to the minimization of 

interferences, and hence the Capon estimator produces a more selective spatial energy 

distribution. The middle panels of Fig. 4-3 shows the channel data and the estimated 

energy for a point target that has moved 1° from the beam direction, which emulates a 

steering error. Again the estimation using the Capon estimator has a narrower 

mainlobe and lower sidelobes. The bottom panels of Fig. 4-3 show the channel data 
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and the estimated energy for a point target located at 6 cm when the receive focal 

point is located at 5 cm from the transducer, which emulates a range focusing error. 

The results show that the energy obtained using the Capon estimator is concentrated 

in the beam direction while the energy estimated using the conventional method 

spreads laterally. Fig. 4-3 clearly demonstrates the advantages of using the Capon 

estimator to estimate the spatial energy distribution for a point target.  

 

 

Fig. 4-3. Channel data and the corresponding spectra over the aperture for a point target using a 

broad transmit beam. The top panels correspond to ideal focusing, the middle panels have a 

steering error, and the bottom panels have a range focusing error. The first column shows the 

channel data with the horizontal and vertical axes representing the channel index and the range, 

respectively. The second and third columns show the spectra estimated using (4-10) and (4-16), 

respectively. The fourth column shows the projections of the estimated spectra. 
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4.3.2 Capon Estimator for a Speckle-generating Target 

The feasibility of using the Capon estimator to assess the spatial energy 

distribution was also tested with speckle-generating targets. Since scattering occurs in 

most clinical situations, an adaptive imaging technique should also be robust in the 

presence of speckle-generating targets. Simulations were performed to test the 

proposed method with broad transmit beams and diffuse scatterers. Plane-wave 

excitation with Hamming apodization was again applied using only the central 64 

elements of the transducer. Fig. 4-4 shows the channel data of the speckle-generating 

targets and the corresponding energy distribution. The effects of phase aberrations are 

also shown in the figure. The first column shows the receive-channel data from  

 

Fig. 4-4. Channel data and the corresponding spectra over the aperture for a speckle-generating 

target using a broad transmit beam. The top panels correspond to ideal focusing, the middle 

panels have a maximum phase error of π/4, and the bottom panels have a maximum phase error 

of π/2. The first column shows the channel data with the horizontal and vertical axes 

representing the channel index and the range, respectively. The second and third columns show 
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the spectra estimated using (4-10) and (4-16), respectively. The fourth column shows the 

projections of the estimated spectra. 

speckle-generating targets, the second and third columns show the energy 

distributions estimated using the conventional and Capon estimators, respectively, and 

the last column shows the lateral projection of the estimated energy distribution. For 

each panel in Fig. 4-4, both the axial and lateral axes are defined as in Fig. 4-3. The 

top panels show the case with perfect focusing, and the middle and bottom panels 

show the cases with maximum phase aberrations of π/4 and π/2, respectively. In 

general the energy distribution is broader for speckle-generating targets than for a 

point target, which is due to the effects of scattering. Again, estimation using the 

Capon estimator produces better spatial resolution and lower sidelobes. Therefore, the 

results demonstrate that the Capon estimator is robust to the direction of the 

insonifying energy from diffuse scatterers and is feasible for estimations made using 

broad transmit beams. 

4.3.3 Aberration Correction for a Simulated Anechoic-cyst Phantom 

The feasibility of using the CFMVDR method to correct phase aberrations was further 

tested with an anechoic-cyst phantom containing speckle-generating targets. The 

center of an anechoic cyst with a radius of 5 mm was located at a depth of 5 cm, and 

the cyst was surrounded by speckle-generating targets. The dimension of the phantom 

was 3 cm in both the lateral and axial directions. The STA method was used to 

improve the image quality of the obtained HFR image. An HFR image was two-way 

dynamically focused using the synthesized receive data from eight different transmit 

apertures, each of which consisted of eight adjacent elements. Phase aberrations were 

corrected using the correlation-based method proposed by Flax and O’Donnell [3, 4] 

and the technique proposed in this study. Fig. 4-5 shows the images of the simulated 

anechoic-cyst phantom and those with phase aberrations. The figure also shows the 

corrected results obtained using the proposed method and the correlation-based 

method. The top panels show the anechoic cyst with ideal focusing, and the middle 

and bottom panels show the cysts with maximum phase errors of π/4 and π/2,  
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Fig. 4-5. Original and corrected images of a phantom containing an anechoic cyst displayed 

with a dynamic range of 45 dB. The left panels show the uncorrected image, and the middle and 

right panels show the images corrected obtained using the correlation-based method and the  

proposed method. (a) and (b) No aberration. (c)–(e) Maximum phase error of π/4 at the imaging 

frequency of 5 MHz. (f)–(h) Maximum phase error of π/2. 

respectively. The left panels show the original images, and the middle and methods, 

respectively. The CR and the CNR were used to evaluate the improvement in image 

quality. The CR and CNR are defined in Section 3. The results listed in Table 4-1 

indicate that the proposed method can improve the CR and CNR by 10.1 dB and right 

panels show the images corrected using the correlation-based and proposed 43.3%, 

respectively. When imaging the same cyst with phase aberrations, the CR 

improvements when using the proposed and correlation-based methods were 3.12 dB 

and 7.89 dB, respectively, when the maximum phase error was π/4, and 4.34 dB and 

5.59 dB when the maximum phase error was π/2; the corresponding CNR 

improvements were 14.34% and 36.28% for a maximum phase error of π/4, and 



 

73 

 

22.84% and 29.42% for a maximum phase error of π/2. The contrast improvement is 

greater and the margin is clearer for the proposed method based on adaptive sidelobe 

reduction than for the correlation-based method. 

 

Table 4-1. CR and CNR values for images of a simulated phantom containing an anechoic cyst. 

CR (dB) Original image 

Correlation-based 

method 

Proposed method 

No aberration 23.31  33.41 

Maximum 

aberration of π/4 
21.75 24.87 29.64 

Maximum 

aberration of π/2 
19.00 23.34 24.59 

CNR Original image 

Correlation-based 

method 

Proposed method 

No aberration 4.41  5.65 

Maximum 

aberration of π/4 
4.02 5.05 5.36 

Maximum 

aberration of π/2 
3.70 4.49 4.65 
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4.4 EXPERIMENTAL INVESTIGATION 

4.4.1 Experimental Setups 

Experiments were also performed to test the efficacy of the proposed method in 

clinical breast imaging. Clinical female breast data were collected at the Taipei 

Veterans General Hospital with assistance from Dr. Y.-H. Chou and with the patients’ 

consent. A schematic diagram of the experimental setup is shown in Fig. 4-6. The 

experimental setup is identical to that in Section 3.  

 

Fig. 4-6. Schemat ic diagram of the experimental setup. 

The STA method was used to obtain high-quality HFR images. An HFR image was 

two-way dynamically focused using the synthesized receive data for different transmit 

apertures. Each transmit aperture generally consisted of eight adjacent elements. In 

other words, the total number of active transmit elements was 16, 32, and 64 for 2, 4, 

and 8 firings, respectively. The only exception was when the number of firings was 64, 

in which case a transmit aperture consisting of 2 elements was used. An f-number of 1 
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was applied to control the receive aperture. Fig. 4-7 shows how the number of firings 

affected the image quality. For images using only two or four firings, the insonified 

energy was concentrated in the central region of the image, and visualization of the 

lesion was poor since the full field of view was not illuminated. When using eight or 

more firings the insonified energy was sufficient for imaging. Furthermore, the 

FWHMs (full widths at half maximum) of the autocovariance function of the imaging 

object were 1.99 mm, 1.91 mm, 1.77 mm, and 1.75 mm when using 2, 4, 8, and 64 

firings, respectively. The results demonstrate that using eight firings represents a good 

compromise between the image acquisition time and image quality.  

 

Fig. 4-7. Comparisons of the effects of different number of firings for the STA method. 

4.4.2 Fibroadenoma 

Fig. 4-8 shows images of a fibroadenoma lesion in a 42-year-old female patient. 

Fig. 4-8(a) is the conventional B-mode image obtained using a focused transmit beam,  

and Fig. 4-8(b) is the conventional image obtained using the correlation-based method 

[3, 4]. Fig. 4-8(c) shows the original HFR image, and Fig. 4-8(d) shows the corrected 

image obtained using the proposed method. The CRs and CNRs were 15.25 dB and 

2.42, respectively, for the original image, and 20.10 dB and 2.97 for the image 

obtained using the proposed method. The improvements in CR and CNR were 

4.84 dB and 22.56% with the proposed method, respectively. In addition, the poor 
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boundary definition in the original image was noticeably improved using the proposed 

method, as was the contrast. For Fig. 4-8(a) and Fig. 4-8(b), the CRs and CNRs were 

15.87 dB and 2.59, respectively, for the conventional B-mode image, and 16.18 dB 

and 2.61 for the image obtained using the correlation-based method. The results 

demonstrate that the proposed method can improve the contrast resolution for HFR 

imaging even more than the correlation-based method for conventional imaging.  

 

Fig. 4-8. Images of a fibroadenoma in a 42-year-old woman displayed with a dynamic range of 

50 dB. The vertical and horizontal axes represent the range and azimuth, respectively. (a) 

Conventional B-mode image with focused transmit beam. (b) Conventional image obtained 

using the correlation-based method. (c) HFR B-mode image. (d) HFR image obtained using the 

proposed weighting method.  

4.4.3 Carcinoma 

Fig. 4-9 shows images of a carcinoma lesion in a 63-year-old female patient. Fig. 

4-9(a) shows the original image, and Fig. 4-9(b) shows the corrected images obtained 

using the proposed weighting method. The CRs and CNRs were 9.58 dB and 1.76, 

respectively, for the original image, and 12.41 dB and 2.07 for the image obtained 

using the proposed method. The improvements in CR and CNR were 2.82 dB and 

17.57% with the proposed method, respectively. Again, the original image shows an 

indistinct lesion margin, and the internal echo texture and several echogenic foci 
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indicating microcalcifications within the breast parenchyma are not clear. The image 

obtained using the proposed method shows better characterization of the margin, and 

enhances the conspicuity of microcalcifications within the breast parenchyma due to 

the improved resolution of the MVDR method.  

 

Fig. 4-9. Images of a carcinoma in a 63-year-old woman displayed with a dynamic range of 50 

dB. The vertical and horizontal axes represent the range and azimuth, respectively. 

Microcalcifications are evident in the breast parenchyma region from 1.3 cm to 3.2 cm in depth 

and from –0.1 mm to 0.8 mm in azimuth. (a) Original B-mode image. (b) Image obtained using 

the proposed weighting method.  

4.4.4 Cyst 

Fig. 4-10 shows images of a cyst in a 66-year-old female patient. Fig. 4-10(a) 

shows the original image, and Fig. 4-10(b) shows the corrected images obtained using 

the proposed method. The CRs and CNRs were 21.22 dB and 3.41, respectively, for 

the original image, and 27.32 dB and 4.11 for the image obtained using the proposed 

method. The improvements CR and CNR were 6.10 dB and 20.43% with the 

proposed method, respectively. The original image shows an indistinct internal echo 

texture within the cystic mass, whereas the image obtained using the proposed method 
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shows the effective suppression of echo signals within the cys tic mass and an 

enhanced contrast between the lesion and the background. Moreover, the margin of 

the cyst was more distinct than in the original image, indicating that both contrast and 

boundary definition were improved in this case.  

 

Fig. 4-10. Images of a cyst in a 66-year-old woman displayed with a dynamic range of 50 dB. 

The vertical and horizontal axes represent the range and azimuth, respectively. (a) Original 

B-mode image. (b) Image obtained using the proposed weighting method.  

4.5 DISCUSSION AND CONCLUDING REMARKS 

Adaptive beam forming techniques such as the MVDR method have recently 

been applied to ultrasound imaging [62, 63]. Due to the minimization of the 

interference power, adaptive beam forming techniques can narrow the beam width of 

the mainlobe and effectively suppress the sidelobes. Therefore, such adaptive beam 

forming methods have the potential of achieving both high spatial and contrast 

resolutions. These advantages have prompted great interest in the use of the MVDR 

method for HFR imaging. Although the MVDR method is very suitable for point-like 

targets, the method needs a more robust estimation of the autocovariance matrix for 
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speckle-generating targets. In this study, (4-13) and (4-16) were used to improve the 

robustness for the MVDR method in imaging speckle-generating targets. The 

K-length block approach (i.e., (4-13)) was used for spatial averaging to improve the 

robustness of the autocovariance matrix estimation. In this study the block length K 

was 4 times the wavelength. Another existing method to improve the robustness of the 

autocovariance matrix estimation is the subaperture method [62].Also the CF is 

estimated not only along the beam axis but also the adjacent steering angles (i.e., 

(4-16)). This approach was previously used to improve the coherence estimation for 

speckle-generating targets [16]. The present chapter has demonstrated that the 

approach can also improve CFMVDR estimation for speckle-generating targets. 

In this study, we utilized the high spatial and contrast resolutions provided by the 

MVDR method in CF estimation. The processing for the proposed method involves 

weighting each image point with the corresponding CF. Unlike the adaptive beam 

forming method that weights the aperture domain data as spatial filtering, the 

proposed method weights the estimated CF on each image point and also reduces the 

computational complexity compared to the adaptive beam forming method.  

The STA was used in this study to improve the quality of HFR imaging. For 

HFR imaging systems using broad transmit beams, image distortions including 

warping and skewing [64] manifest from misalignment between the transmit and 

receive beams. The STA method can improve image quality by utilizing synthesized 

transmit focusing, and improve the SNR for low-resolution images. Although the use 

of more firings to synthesize a larger transmit aperture can improve image quality, the 

data acquisition time needs to remain sufficiently short to avoid motion artifacts. The 

use of only eight firings in this study to synthesize an image represented a good 

compromise between image quality and data acquisition time. Note that although the 

STA was used in this study to improve image quality, the STA is not essential to the 

proposed method; that is, the proposed method is also suitable for HFR imaging 

without the STA. As described in Sections III-A and III-B, the MVDR method can 

estimate the on-axis component with high accuracy without applying the STA method. 
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Nonetheless, the two-way dynamic focusing applied by the STA method can further 

improve CF estimation due to the higher coherence resulting from transmit focusing. 

 

Fig. 4-11. Images of a phantom and their corresponding CF maps. The left panels are the 

original images obtained using a fixed focal depth of 5 cm on transmit and dynamic receive 

focusing, and are displayed with a dynamic range of 50 dB. The middle and right panels are the 

CF maps estimated using the MVDR method and a previously reported method [16, 17], 

respectively, and are displayed with a dynamic range of 30 dB. Each beam in the upper panels 

was formed with an aperture size of 64 elements on both transmit and receive. Each beam in the 

lower panels was formed with aperture sizes of 8 elements on transmit and 64 elements on 

receive. 

This study focused on correcting phase aberrations in HFR ultrasound imaging, 

but the proposed method can also be applied to conventional imaging system with 
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focused transmit beams. This corresponding results are illustrated in Fig. 4-11. The 

left panels of Fig. 4-11 show images formed with a fix transmit focal depth of 5 cm 

and with dynamic receive focusing. The middle and right panels are the 

corresponding CF maps estimated using the proposed MVDR method and a 

previously reported method [16], respectively. The upper panels show the results for 

transmit and receive apertures with 64 elements, and the lower panels show the results 

using 8 elements for the transmit aperture and 64 elements for the receive aperture. 

The upper and lower panels indicate the images obtained using narrow and broad 

transmit beams, respectively. The results demonstrate some drawbacks when applying 

the proposed method to ultrasound imaging with focused transmit beams. First, the 

contrast near to the focal depth is similar to that for the conventional method. 

Moreover, the estimated coherence degrades rapidly away from the focal point. When 

imaging using broad transmit beams, on the other hand, the MVDR method can 

improve CF estimation especially with a point- like target. Also, the MVDR method 

has considerably higher computational requirements. Therefore, it is preferable to use 

the conventional method for CF estimation in conventional imaging with focused 

beams. 

In conclusion, this chapter proposes an adaptive technique based on the CF and 

the MVDR method to reduce focusing errors in HFR ultrasound imaging, especially 

those resulting from sound-velocity inhomogeneities. The proposed method was 

evaluated using both simulation and experimental data, with the results demonstrating 

that it is effective in HFR imaging applications.  
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CHAPTER 5 CONCLUSIONS AND FUTURE 

WORKS 

5.1 CONCLUSIONS  

In this thesis, several aperture domain processing techniques, including vector 

velocity estimation and the adaptive imaging techniques for both conventional and 

high-frame-rate imaging have been proposed. Feasibilities of these methods were 

demonstrated using simulation and experimental results. Moreover, these methods can 

improve the imaging system using 1D arrays and can be further extended to systems 

using 2D arrays. In chapter2, the proposed vector velocity estimation method can not 

only estimate the lateral velocity component but also improve the accuracy of the 

axial velocity estimation over the conventional flow estimation technique. The mean 

estimation error for the axial velocity component is 2.18% for the new method, 

compared to 4.51% for the conventional method. The mean estimation error for the 

lateral velocity component is 15%, which is comparable to existing methods  

Furthermore, a subaperture method is introduced to improve the performance of flow 

estimation at low SNRs. 

The proposed adaptive imaging techniques can effectively correct focusing 

errors resulting from sound-velocity inhomogeneities and improve the contrast of the 

image. Adaptive imaging using sidelobe-reduction techniques, such as the 

coherence-based weighting methods investigated in Chapters 3 and 4, are of particular 

interest since these techniques do not make any assumptions regarding the source of 

the sidelobes. In chapter 3, Relative to nonweighted imaging, the average 

improvements in the contrast ratio and contrast-to-noise ratio for the coherence-based 

method were 8.57 dB and 23.2%, respectively, whereas the corresponding 

improvements when using the correlation-based method were only 0.42 dB and 

3.35%. In chapter 4, we tested the proposed method with the STA method where only 

eight firings are required to form an image. Both simulations and clinical breast 



 

84 

 

imaging data were used, and the proposed method enhanced the mean contrast by 

around 4.6 dB and the mean contrast-to-noise ratio by around 20%. The feasibility of 

the coherence-based weighting method in improving image quality without the use of 

a 2D (or 1.5D) array was demonstrated.  

5.2 FUTURE WORKS  

Future works include further performance investigation on the application of 

aperture domain data processing in clinics and an efficient implementation of the 

aperture domain processing techniques.  

5.2.1 Vector Flow Estimation 

From the results of Chapter 2, it is concluded that real- time two-dimensional 

estimation of the vector velocity using the aperture domain data is feasible. Future 

works will extend the proposed method to in-vivo experiments and take into account 

the influence of physiological motion artifacts. Furthermore, the flow estimation 

method can improve the imaging system using 1D arrays and can be further extended 

to the systems using 2D arrays for 3D vector velocity estimation. Also, combining the 

STA method can increase the imaging frame rate up to the pulse repetition frequency 

[65, 66] . STA imaging gives the possibility to acquire an image with only few 

emissions and is appealing for 3D ultrasound imaging. In STA imaging, it is possible 

to focus the receive data in any direction. The 2D vector velocity estimation within the 

imaging plane can be achieved using a limited number of flow samples since the 

transmission is spherical and illuminates the full region of interest. Though the 

number of emissions is low, the change in position of the scatterers leads to 

distortions in the image. In order to develop velocity estimation methods a further 

investigation of the nature of motion artifacts is needed.  Previous study has shown 

that correlation between the image frames are high and it is possible to achieve high 

accuracy flow estimation with STA [67]. Also STA can improve the proposed 

velocity vector estimation technique in clutter filtering and reducing estimation errors 
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method and is less affected by physiological motion artifact. Thus, this can be used to 

devise a high accuracy full vector velocity imaging system. 

5.2.2 Microcalcification Detection in Breast Ultrasound 

The appearance of microcalcifications in sonography is an important indicator of 

early breast cancer. Microcalcifications are calcium deposits and are identified as tiny 

areas slightly brighter than the surrounding tissue. Detection of microcalcification has 

been performed in clinics to help the diagnosis of the breast tumor malignancy. There 

are five characteristics of calcifications (morphology, size, distribution, number, and 

location) described in morphology of breast microcalcifications, and the predictive 

value for malignancy varies with the classification type [68, 69]. Detection of 

microcalcifications using ultrasound has not been successful. The general clinical 

experience shows that the image noise results in unreliable diagnosis. The presence of 

microcalcifications cannot be positively identified from noise due to s imilar image 

characteristics. The acoustic properties of microcalcifications such as spatial 

coherence of echoes from microcalcifications are currently of interest [70]. Previous 

simulation results (as shown in the middle panels of Fig. 4-11) have demonstrated that 

the CFMVDR method can enhance point- like-targets without using a strong transmit 

focusing. This implies the feasibility to enhance microcalcificat ions using the 

proposed CFMVDR method with a plane wave excitation or a defocused transmit beam. 

Further clinical studies will be performed to test the effectiveness of contrast 

enhancement of microcalcifications using the CFMVDR method. 

5.2.3 Efficient Implementation of the Aperture Domain Processing 

Techniques 

Recently, Graphics processing units (GPUs) will be used for diverse data-parallel 

computations to increase the programmability and performance of aperture domain 

processing. GPUs are eminently suitable for aperture domain processing since they 

can optimally perform the processing for individual channels in parallel. Fine-grained, 

data-parallel threads are the fundamental means of parallel execution on GPU. As 
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shown in Fig 5.1, launching a kernel creates a grid of threads that all execute the 

kernel function. When the kernel is launched at run-time, the kernel functions are 

executed by each individual created thread. To accelerate the beamforming processing, 

the STA method using GPU is the directly summing the weighted RF data with proper 

phase rotation and can be formulated as 

 
2 ( ( , , ))

( ) filter( ) ( , , )
c rot

i
j f t i m n

fs

m n i
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y t i r t m n e
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 
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where the filter(i) is the coefficient of low pass filter corresponding to the i-th tap,

( , , )rot i m n  is the corresponding phase rotation, and m and n denote the index of 

transmit and receive apertures, respectively. The throughput of the processing is 

improved since it minimizes the duplicate memory access operations. The 

Gauss-Jordan Elimination [71] approach is used in the matrix inversion of the 

adaptive imaging and individual raw operations are executed in accordance using 

multiple threads on GPU. Besides, the subaperture method [62] is cooperated in the 

autocovariance matrix estimation to improve the robustness and efficiency. The 

autocovariance matrix using subaperture method can be expressed as  

0
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( ) ( )
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where  1 1

T

l l l l LX x x x   , L is the number of subapertures, l is the 

subaperture index. Preliminary results have demonstrated that the parallel channel 

processing such as beam formation executed on GPU platform (NVidia GTX260) 

can be 238 times faster than those on the CPU platform. Furthermore, the CFMVDR 

estimation for high frame rate imaging executed on GPU platform can be 3.2 times 

faster than that on the CPU platform. Based on the GPU processors, high speed and 

high accuracy aperture domain processing becomes more feasible and reliable. 
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Fig. 5-1. Illustration of multi-processors executing multiple threads. (From: 

http://www.nvidia.com/) 

Finally, the proposed aperture domain processing techniques including the 

adaptive imaging and vector velocity estimation or other techniques (e.g., parameter 

imaging for sound velocity [21] and attenuation coefficient [22]) will be integrated  

and performed on this GPU platform to achieve high-speed high-performance 

imaging . 
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