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中文摘要 

使用傳統超音波灰階影像來偵測乳房中的腫瘤時，其效果常因對比解析度不

足而受限。使用其他的組織特性如聲速和衰減係數來成像，可以提供額外的診療

資訊。在本論文中，我們提出了一個基於有限角度穿透式斷層掃描(limited-angle 
transmission tomography) 來重建乳房中聲速分佈和衰減係數 (attenuation 
coefficient)分佈的技術。我們所用的成像設備和乳腺 X 光攝影檢查術(x-ray 
mammography)的設備類似。在這個設備中，一個所有通道都可獨立發射、接收

的線性陣列探頭被置於乳房的上方，而一個置於乳房下方的金屬板則被用來反射

脈衝信號以取得成像所需的飛行時間(time-of-flight)資料和衰減資料。使用這個

設備可以同時取得成傳統超音波灰階影像、聲速分佈和衰減係數分佈所需的資

料。然而有限的投影角度使得系統無法收集到重建聲速分佈和衰減係數分佈所需

的完整資料，也使得重建出來的結果不準確。為了改善準確度，我們發展出一個

基於凸面規劃(convex programming formulation)的重建演算法。在聲速分佈的重

建方面，這個演算法成功地利用同一成像物體的傳統灰階影像資訊來提升聲速估

計的準確度。而在衰減係數分佈的重建方面，為了改善衰減係數的估計準確度，

除了使用基於凸面規劃的重建演算法，我們還提出了一個基於角頻法(angular 
spectrum method)的技術，利用聲速分佈的資訊來補償折射對衰減資料的不利影

響。模擬和實驗結果證實了使用我們所提出的方式，利用線性陣列探頭來進行有

限角度穿透式斷層掃描是可行的。聲速分佈和衰減係數分佈可以用來輔助傳統超

音波灰階影像，提升偵測乳房中腫瘤的準確度。 
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Abstract 

The performance of B-mode ultrasound in the clinical detection of breast cancer 
is often limited by poor contrast resolution. Contrast mechanisms based on alternative 
tissue characteristics, such as direct estimation of sound velocities and attenuation 
coefficients in different tissues, may offer additional diagnostic information. An 
approach based on limited-angle transmission tomography for reconstruction of the 
sound velocity distribution and attenuation coefficient distribution in the breast is 
proposed in this thesis. The imaging setup is similar to that of x-ray mammography. 
With this setup, the time-of-flight data and the attenuation data are acquired by a 
linear array positioned at the top of the compressed breast that both transmits and 
receives, and a metal plate is placed at the bottom as a reflector. Such a setup can be 
easily integrated with a B-mode system so that the acoustic data for all of the B-mode 
image, the sound velocity distribution, and the attenuation coefficient distribution can 
be simultaneously acquired. However, the acquired data are incomplete, and this 
results in inaccurate sound velocity estimation and attenuation coefficient estimation. 
In order to improve the estimation accuracy, a new reconstruction algorithm based on 
a convex programming formulation was developed. This improvement is mainly 
attributable to the proposed algorithm successfully incorporating information from the 
B-mode image of the same object. Furthermore, a technique based on the angular 
spectrum method was developed to compensate the effects of refraction on the 
attenuation data using the information on sound velocity distribution. Simulation 
results and experimental results demonstrate that the proposed approach to 
limited-angle transmission tomography using linear arrays is feasible. Both the sound 
velocity image and the attenuation coefficient image can be used to complement 
conventional B-mode image to enhance the detection of breast cancer. 
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Chapter 1  Introduction 

1.1 Sound velocity, attenuation coefficient, and breast 

cancer detection 

The detection of breast cancer using B-mode ultrasound is of clinical importance 
[1]–[4]. Although x-ray mammography is also a popular modality for breast cancer 
detection, ultrasound is more effective in cases such as the differential diagnosis of 
pathologies in the radiologically dense breast [1]. Furthermore, B-mode ultrasound is 
an effective adjunct to mammography in reducing the number of negative biopsy 
results [4]. In order to improve the effectiveness of B-mode ultrasound in breast 
cancer detection, several issues need to be addressed. First, severe distortions caused 
by sound velocity inhomogeneities (including phase aberrations and wavefront 
amplitude distortions [5]–[9]) may be present. Such distortions degrade the contrast 
resolution and therefore reduce cancer detectability. Furthermore, even if a region of 
interest (ROI) is detectable above the background it may still be difficult to 
distinguish a tumor from a region of fat. This leads to a second issue, related to the 
fundamental contrast mechanism. In B-mode ultrasound, the image contrast is 
primarily determined by tissue scattering properties and acoustic impedance. In other 
words, if two regions in the image have similar scattering properties and acoustic 
impedance, they may not be distinguishable. In breast B-mode ultrasound, a fat region 
and a tumor may have similar characteristics on the resulting image. For example, the 
B-mode image of a solid homogeneous hypoechoic tumor with irregular borders may 
look like a fat region [1]. Alternative imaging methods can be used to form a breast 
image based on different acoustic parameters. One example is the elasticity imaging 
based on elastic modulus [10], [11]; since elastic modulus varies over a wide range in 
different tissues, it is possible to provide a much higher contrast among different 
tissues of interest. 

In this study, two physical parameters are of interest. The first one is the sound 
velocity. One of the reasons is that the velocity of sound in cancerous tissue is higher 
than that in fat [12]. Although the sound velocity distribution alone may not be 
adequate for obtaining full diagnostic information, tumors can be detected more 
accurately and effectively by combining the sound velocity distribution information 
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with the corresponding B-mode image. The second reason for using sound velocity is 
that if the sound velocity distribution can be found, it may be possible to devise an 
adaptive imaging scheme and to correct for the image distortion in conventional 
B-mode imaging due to sound velocity inhomogeneities [13]–[18]. Another physical 
parameter of interest is the attenuation coefficient because the attenuation coefficient 
varies from tissue to tissue. For example, the attenuation of cancerous tissue is higher 
than that of cyst. Therefore, the attenuation coefficient distribution in the breast can 
also help the detection of breast cancer [19]–[21]. 

1.2 Limited angle transmission tomography 

Fig. 1.1. Tomographic imaging setup allowing the acquisition of B-mode images, sound velocity 

distributions, and attenuation coefficient distributions. Each of the channels in the array can transmit 

independently. A metal plate at the bottom of the compressed breast reflects the acoustic signal.  

The sound velocity distribution and the attenuation coefficient distribution can be 
measured using ultrasonic computed tomography [22]. However, the apparatus used 
for computed tomography is very different from that used for B-mode imaging. It is 
the main purpose of this thesis to develop an imaging strategy for reconstructing the 
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sound velocity distribution and the attenuation coefficient distribution using 
pulse-echo data from a linear array, such as that used in B-mode imaging. Hence, the 
limited-angle transmission tomography setup shown in Fig. 1.1 was adopted [23], [24]. 
Fig. 1.1 shows that a linear array is placed at the top of the image object and a metal 
plate at the bottom reflects the acoustic wave. In addition to performing B-mode 
imaging, the imaging setup is also capable of transmitting a wideband pulse from a 
single channel in order to acquire a complete channel data set and corresponding 
time-of-flight data set and attenuation data set, which contain information on the 
sound velocity distribution and the attenuation coefficient distribution of the image 
object, respectively. Thus, all of the B-mode images, sound velocity distributions, and 
attenuation coefficient distributions can be acquired using a single setup. Note that the 
setup is similar to the setup proposed by Krueger et al. [25], [26]. Nonetheless, a new 
reconstruction algorithm is proposed in this thesis that provides a significant 
improvement in estimation accuracy. As described in Section 2.3, the B-mode image 
is used for segmentation such that constraints can be properly defined and imposed 
during reconstruction, and the improvement in estimation accuracy is mainly 
attributable to the proposed technique successfully incorporating information from the 
B-mode image of the same object. Note that the use of B-mode images for 
segmentation has also been proposed in near-infrared breast imaging [27], [28]. 

1.3 Thesis organization 

This thesis is organized as follows. Chapter 2 presents the basic equations for the 
imaging setup shown in Fig. 1.1 and introduces the algorithms for reconstructing 
sound velocity distributions. In Chapter 3, simulations were performed to test the 
efficacy of the proposed technique. The effects of wave propagation such as refraction 
and diffraction were included in the simulated data, and these data were used to 
evaluate the algorithms introduced in Chapter 2. In Chapter 4, a custom-made 
phantom containing a variety of image objects with differing physical properties was 
used to experimentally investigate the performance of the approach proposed in 
Chapter 2 and evaluated by simulations in Chapter 3 for reconstructing sound velocity 
distributions. The imaging setup shown in Fig. 1.1 can also be used to reconstruct 
attenuation coefficient distributions. Chapter 5 presents the basic equations and the 
algorithms for reconstructing attenuation coefficient distributions, which were 
experimentally evaluated using the data used in Chapter 4. Chapter 6 discusses the 
efficacy of applying the sound velocity distribution to correcting for the waveform 
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distortions caused by sound velocity inhomogeneities and the efficacy of applying 
coded excitation to signal-to-noise ratio (SNR) enhancement when collecting the 
time-of-flight data. This thesis concludes in Chapter 7. Future works are also 
described. Appendix A presents a new coded excitation scheme that efficiently 
synthesizes codes for arbitrary waveforms using a bipolar square wave pulser. The 
technique can be applied to enhance the SNR, which is essential for time-of-flight 
estimation. 
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Chapter 2  Reconstruction of the sound velocity 

distribution 

2.1 Basic equations for the imaging setup 

Consider the imaging setup shown in Fig. 1.1. Assume that the image objects 
contain targets uniform along the z -axis, and t  denotes the time. Note that the 
setup is similar to that of x-ray mammography [29] and the one proposed by Krueger 
et al. for ultrasound [25], [26]. Fig. 1.1 shows that the linear array has AN  channels 

and that a metal plate is used for reflecting the acoustic wave. The array axis and the 
beam axis are defined as the x -axis and the y -axis, respectively. In addition to 

performing B-mode imaging, the imaging setup shown in Fig. 1.1 is also capable of 
transmitting a wideband pulse from a single channel in order to acquire a complete 

channel data set { } A,1 ,)( Njiteij ≤≤ , where )(teij  is the echo signal received by 

channel j  when only channel i  transmits. With )(teij , the time-of-flight ijt  

corresponding to the same transmit/receive combination for the echo reflected from 
the bottom metal plate can be obtained. 

Let ),( yxc  denote the sound velocity at the center frequency of the transmitted 

pulse. When only soft tissues are considered and only time-of-flight is of interest, 
effects of refraction associated with sound velocity inhomogeneities can be ignored 
[22]. In this case, 

∫=
ijL

ij dlyxst ),( ,       (2.1) 

where ijL  is the path of the line integral as shown in Fig. 1.1, and ),(),( 1 yxcyxs −=  

is defined as the slowness. Assume the average slowness in the image object is 
1

00
−= cs , and define 
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∫=
ijL

ij dlst 00,        (2.2) 

as the geometrical delay, then the time-of-flight with geometrical delay compensated 
becomes 

[ ] ∫∫ ∆=−=−=∆
ijij LL

ijijij dlyxsdlsyxsttt ),(),( 00, .    (2.3) 

),( yxs∆  can be discretized with spatial sampling intervals sx∆  and sy∆  in the x  
and y  directions, respectively. In this case, (2.3) becomes 

sl ∆=∆=∆ ∑∑
= =

T

1 1
),(),( ij

N

n

M

m
ijij nmlnmst ,     (2.4) 

where ijl  and s∆  are 1×MN  column vectors, ( ) ),(
)1(

nmlijnNmij ≡
+−

l  is the 

contribution of grid point ),,( nm  ,1 Mm ≤≤  Nn ≤≤1  [i.e., the length of the line 

segment which is the intersection of the path ijL  and the rectangle centered at the 

grid point ),( nm  with a size of ss yx ∆×∆ ], and ( ) ),()1( nmsnNm ∆≡∆ +−s . 

There are a total of 2
AN  equations in (2.4). Due to the assumption of the 

straight-line propagation path, jiij ll = , and ijt∆  can be set to ( ) 2/jiij tt ∆+∆  for 

,1 ANi ≤≤  ij ≤≤1 . Thus, the number of equations reduces to 2/)1( AA +NN  and 

they can be put into the following matrix form: 

tsL ∆=∆ ,       (2.5) 

where t∆  is an [ ] 12/)1( AA ×+NN  column vector and L  is an 
[ ] MNNN ×+ 2/)1( AA  matrix. In (2.5), t∆  is obtained from the channel data, and 

L  is calculated based on the geometry. The focus of this thesis is to develop a 
scheme for accurately solving slowness distribution s∆ . 

2.2 A brief introduction to the convex programming 

formulation 
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In this thesis, { })(property : xXx PC ∈=  means that C  is a subset of X  

containing all x  in X which have the property P  [30]. A complete inner product 
space is called a Hilbert space. On the finite-dimensional Euclidean space MNR , if for 

all [ ]T21 MNxxx L=x  in MNR  and all [ ]T21 MNyyy L=y  in MNR , 

their inner product is defined as the Euclidean inner product 

xyyx T

1
, ==∑

=

MN

l
ll yx ,      (2.6) 

then MNR  is a Hilbert space [31]. Each slowness distribution s∆  is an element in 
MNR . 

Let C  be a closed convex set in a Hilbert space H . Then for each u  in H , 
there exists a unique *u  in C  that is closest to u . That is, 

vuuu
Cv

−=−
∈

min* ,      (2.7) 

where ⋅  is the norm induced by the inner product. This unique nearest neighbor *u  

in C  of u  is called the projection of u  onto C , and the operator assigning 

uPu C=*  to each u  is called the projector onto C  and is denoted by CP . For 

example, if the closed convex set C  represents a set of distributions satisfying a 
given condition and u  is any initial guess, then a distribution in C  that is closest to 
distribution u  can be found. Assume that for a real problem one tries to find a 
solution u  in H  satisfying a given constraint, and the associated constraint set 

{ }constraintgiven   thesatisfies : uuC H∈=       (2.8) 

is nonempty, closed, and convex, then a solution Cu∈  is 0
* uPu C= , where 0u  is 

any given initial condition. If there are k  constraints in a problem and each 

{ } ,,,2,1 ,constraintth   thesatisfies : liiuuCi L=∈= H      (2.9) 

is closed and convex, then all the solutions form a set I
l

i
iCC

1
0

=

=  which is also 

closed and convex. Thus, 00
uPC  is a solution provided that 0C  is nonempty. 
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In the presence of inconsistent constraints, which may arise from inaccurate 
measurements such as estimation errors in the pulse arrival time, 0C  is empty and 

there is no solution. One way to solve this problem is to divide all of the constraints 
into two classes: one class contains the hard constraints that the solution must satisfy, 
and the other class contains the soft constraints for which the total amount of violation 
must be minimized. Let shc III U=  be the finite constraint index set, where hI  
denotes the possibly empty hard-constraint index set, sI  denotes the nonempty 
soft-constraint index set, and sh II I  is empty. Define 

),(
2
1)( 2s

s
i

Ii
i Cudwu ∑

∈

=Φ ,      (2.10) 

where ]1,0(∈iw  for all sIi∈ , 1
s

=∑
∈Ii

iw , and { }ii CvvuCud ∈−= :inf),(  is the 

distance between u  and iC , where inf stands for the greatest lower bound. Suppose 

that H  is finite dimensional, iC  is bounded for some cIi∈ , I
h

h

Ii
iCC

∈

=  is 

nonempty, and take h
0 Cu ∈ , ]1,0[∈nλ  for all 0≥n  such that ( ) ∞=−∑

≥0

1
n

nn λλ , 

and ]2,0(∈γ . Let 

( ) ( ) 0,)1(1
s

h1 ≥







+−+−= ∑

∈
+ nuPwuPuu

Ii
nCinCnnnn i

γγλλ .   (2.11) 

Then the sequence { }nu  converges to a point u  with )(min)( ss
h

vu
Cv
Φ=Φ

∈
 [32]. That 

is, (2.11) can be used to find a solution that satisfies all the hard constraints and 
minimizes the objective function sΦ , which is the total amount of violation of the 
soft constraints. Note that such a problem is in a convex programming formulation 
since sΦ  is a convex function on a convex set hC . 

2.3 Reconstruction algorithms 

Several approaches can be used to solve (2.5), of which the convex programming 
formulation for inconsistent problems introduced in Section 2.2 was chosen because it 
can incorporate the B-mode image information. 
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To achieve good reconstruction accuracy, prior knowledge of s∆  must be used. 
For example, the sound velocity in soft tissue and s∆  are both bounded. Thus, the 

sound velocity is assumed to be in ],[ upperlower cc  (where m/s 1450lower =c  and 

m/s 1580upper =c  throughout the thesis), and this is a hard constraint (i.e., a constraint 

that cannot be violated). Define 

{ }MNlscscxC l
MN ≤≤−−∈∈= −− 1 ],,[: 0

1
lower0

1
uppervelocity Rx ,     (2.12) 

where 0s  is the assumed background slowness; then velocityC  is referred as a 

property set since it is relevant to the prior knowledge. Note that velocityC , which 

contains the slowness distribution that satisfies the velocity constraints, is nonempty, 
bounded, closed, and convex. 

If L  in (2.5) is expressed as [ ]T2/)1(21 AA += NNlllL L  and t∆  as 

[ ]T2/)1(21 AA +∆∆∆=∆ NNttt Lt , in order to satisfy (2.5), the slowness distribution 

s∆  must belong to 

{ } 2/)1(,,2,1 ,,: AA +=∆=∈=∆ NNitC ii
MN

ti
LlxRx ,     (2.13) 

where each 
it

C∆  is a closed and convex set in MNR  (i.e., s∆  must belong to 

I it
C∆ , the intersection of the 

it
C∆  sets). Each 

it
C∆  set in (2.13) is referred as a 

data set since it is directly related to the known it∆ . I it
C∆  may be empty, and even 

if it is nonempty, the points in the set may not lead to reasonable sound velocities. 

Therefore, the 
it

C∆  that contains all the slowness distributions that satisfy it∆  is a 

soft-constraint set. The slowness distribution s∆  does not have to match all 
time-of-flight data. In other words, violation is allowed. Nonetheless, the distribution 
must minimize the total errors. 
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A slowness distribution velocityC∈x  minimizing the cost function (i.e., the total 

amount of violation of the time-of-flight data) 

∑
+

=
∆=Φ

2/)1(

1

2s
TOF

AA

),(
2
1)(

NN

i
ti i

Cdw xx ,     (2.14) 

where ]1,0(∈iw  for all { }2/)1(,,2,1 AA +∈ NNi L , 1
2/)1(

1

AA

=∑
+

=

NN

i
iw , and ),(

it
Cd ∆x  is 

the distance between x  and 
it

C∆ , can be found by taking x  as the limit of the 

sequence { }nx  (i.e., nn
x

∞→
lim ). velocity0 C∈x  is an initial slowness distribution, and 

( ) ( ) 0 ,)1(1
2/)1(

1
1

AA

velocity
≥








+−+−= ∑

+

=
+ ∆

nPwP
NN

i
nCinCnnnn it

xxxx γγλλ ,  (2.15) 

where ]1,0[∈nλ  for all 0≥n , ( ) ∞=−∑
≥0

1
n

nn λλ , ]2,0(∈γ , and 
velocityCP  is the 

projector onto velocityC . This algorithm is called Algorithm I. The parameters nλ  and 

γ  determine the rate of convergence, and the weights iw  reflect the relative 
importance of the time-of-flight data. In each case in this thesis, all weights iw  were 
set to be the same (i.e., each time-of-flight is equally important), 5.0=nλ  for all 

0≥n  [satisfying ( ) ∞=−∑
≥0

1
n

nn λλ ], and 1=γ . 

As is shown in Section 3.3, using only velocityC  as the hard-constraint set is not 

sufficient to obtain an accurate sound velocity distribution; thus other constraints are 
needed. A second method utilizing the B-mode image information is proposed. 
Consider a B-mode image in which an object contains an ROI surrounded by the 
background. Suppose that this ROI can be identified and segmented, then different 
constraints can be imposed in the ROI and the background. In other words, the 
following property set can be generated and used as another hard-constraint set: 
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where { }
b

,,, 21b NbbbI L≡  is the background index set, { }
r

,,, 21r NrrrI L≡  is the ROI 

index set, and { }
br

,,, 21br NbrbrbrI L≡  is the boundary index set. (2.16) means that all 

the slowness values in the background must be the same, and all the slowness values 
in the ROI must also be the same. In addition, each slowness value at the boundary 
must be between that of the background and that of the ROI. Note that no specific 

slowness value has been set in any region at this point. Also note that imageC , which 

contains all the slowness distributions that satisfy the constraint derived from the 

B-mode image, is also closed and convex. The imageC  can be similarly generated 

when the object contains more ROIs. A slowness distribution imagevelocity CC I∈x  

minimizing )(s
TOF xΦ  can be found by taking x  as the limit of the sequence { }nx  

(i.e., nn
x

∞→
lim ). imagevelocity0 CC I∈x  is an initial slowness distribution, and  

( ) ( ) 0 ,)1(1
2/)1(

1
1

AA

imagevelocity
≥








+−+−= ∑

+

=
+ ∆

nPwP
NN

i
nCinCCnnnn it

xxxx γγλλ I .   (2.17) 

This algorithm is called Algorithm II, which differs from Algorithm I only in the 
projector outside the brackets (i.e., the slowness distribution must be in the 

hard-constraint set imageC  in addition to being in velocityC  in Algorithm II). The 

critical issue of the proposed method is the incorporation of imageC , which is shown in 

Section 3.4 to be crucial to the quality of the reconstructed sound velocity 
distribution. 

A sound velocity distribution [ ]T21 MNccc L=c  and a slowness 
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distribution [ ]T21 MNsss ∆∆∆=∆ Ls  are related as follows: 

( ) MNlssc ll ,,2,1 ,1
0 L=∆+= − .     (2.18) 
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Chapter 3  Numerical results—sound velocity 

In this chapter, simulations were performed to test the efficacy of the proposed 
technique. All the raw data generated in this chapter were noise free. However, the 
effects of wave propagation such as refraction and diffraction were included in the 
simulated data. The B-mode images were simulated using a k-space method [33], and 
the time-of-flight data were generated using the series solution to the scattering of a 
plane wave incident on a fluid cylinder [34]. These data were used to test Algorithm I 
and Algorithm II introduced in Section 2.3. 

3.1 B-mode image generation 

All B-mode images in this chapter were generated with a k-space method 
proposed by Tabei et al. [33]. This method solves the coupled first-order linear 
acoustic propagation equations for a fluid medium and allows inclusion of relaxation 
absorption and perfectly matched layers. It enables accurate calculation of scattering 
in soft tissues, and therefore simulated speckle images can be formed. Furthermore, 
diffraction, refraction, and scattering in an inhomogeneous medium are all accounted 
for. A brief description of the k-space method is included below. 

The coupled first-order linear acoustic propagation equations for a 
two-dimensional fluid medium with perfectly matched layers and relaxation 
absorption [35] are 

x
tptu

t
tu

xx
x

∂
∂

−=





 +

∂
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where ),( yx=r  is the Cartesian coordinate, ),( yx uu  is the acoustic particle 

velocity fluctuation, ),(),(),( tptptp yx rrr +=  is the acoustic pressure fluctuation, 

)(rρ  is the density of the medium, )(rxα  and )(ryα  are dispersionless absorption 

parameters employed only within the perfectly matched layers, the ⊗  operator 
denotes temporal convolution, and ),( trκ  is the generalized compressibility defined 

as 

[ ]∑
=

∞ −+=
rN

q
q

q

q tHttt
1

)()(/exp
)(
)(

)()(),( r
r
r

rr τ
τ
κ

δκκ ,    (3.5) 

where [ ])()(/1)( 2 rrr ∞∞ = cρκ , ( )fcc
f

,lim)( rr
∞→∞ =  is the sound velocity of the 

medium when the temporal frequency f  approaches infinity, )(rqτ  is the 

relaxation time for the q th relaxation process, )(rqκ  is the relaxation modulus for 

the q th order relaxation process, )(tδ  is the Dirac delta function, and )(tH  is the 

Heaviside step function. By introducing state variables 
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where )(⋅  denotes x  or y , (3.1)–(3.4) can be solved by a temporal iteration 

scheme. The discrete field equations are 
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where t∆  is the temporal increment at each iteration, 2/ttt ∆+=+ , 2/ttt ∆−=− , 
),2/(1 yxx ∆+=r , )2/,(2 yyx ∆+=r , x∆  and y∆  are the spatial sampling 

intervals in the x  and y  directions, respectively, 
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and 
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where F  and 1F−  represent the spatial Fourier transform and inverse Fourier 

transform, respectively, ),( yx kk=k  is the wave vector, 22
yx kkk += , and 0c  is 

the ∞c  value of the background. 

All simulation data were generated under MATLAB (Mathworks, Natick, MA). 
The FFTW routine was also adopted [36] for the fast Fourier transform in order to 
make the k-space method more computationally efficient. The hardware platform was 
a personal computer with a 2.4 GHz Pentium 4 CPU and a total RAM of 1.5 gigabytes. 

Obtaining a complete channel data set { } A,1 ,)( Njiteij ≤≤ , requires AN  firings, 

which in general is very time consuming. In order to reduce the computation time, 
only eight firings are used per image, with all channels receiving to generate a 
B-mode image using a synthetic aperture approach. It took about one day to generate 
the required data for each case. 

3.2 Generation of the time-of-flight data 

The simulation time can be reduced by generating the time-of-flight data without 
simulating the channel data. In this case, the time-consuming k-space method is 
replaced by the series solution to the scattering of a plane wave incident on a fluid 
cylinder [34]. The details of this method are provided below. 

With reference to Fig. 3.1(a), consider the following problem: An acoustic wave 
);,( tyxw  propagates along the y+  direction in a linear fluid medium that has 

background physical parameters ( ))(, 00 fcρ ––where ρ  is the density, c  is the 
sound velocity, and f  is the temporal frequency––and contains a cylinder with 
physical parameters ( ))(, 11 fcρ , radius a , and centered at ( )11, yx . Assuming that 
attenuation can be ignored and that );0,( txw  is known, find );,( 2 tyxw . 

Because the medium is linear, the above problem is equivalent to the following: 
find );,( 2 fyxW  assuming that );0,( fxW  is known, where );0,( fxW  and 

);,( 2 fyxW  are the temporal Fourier transforms of );0,( txw  and );,( 2 tyxw , 
respectively. It has been shown that if );,( fyxW  represents an incident plane wave, 
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then there exists an exact series solution for );,( 2 fyxW  [34]. 

Fig. 3.1. Illustration of time-of-flight data generation (see text for details). 

Let the angular spectrum of );0,( fxW  be ( )fkW x ,0;~  [37], i.e., 
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( )∫= xxx dkxjkfkWfxW )exp(,0;~
2
1);0,(
π

.    (3.19) 

Except for those complex-exponential functions )exp( xjkx  with )(/2 0 fcfkx π> , 

which represent evanescent waves, each )exp( xjkx  represents a plane wave 

propagating with the wave vector ( )22
0 ))(/2(, xx kfcfk −π . Thus 

( )∫− ′≅
)(/2

)(/2 22
0

0

,,;~
2
1);,(

fcf

fcf xx dkfyxkWfyxW
π

ππ
,   (3.20) 

where ( )fyxkW x ,,;~
2′  is the series solution corresponding to the term 

( ) )exp(,0;~ xjkfkW xx . 

For the configuration in Fig. 3.1(b), the method for calculating the signal, )(teij , 

received by transducer j  in the lower array when transducer i  in the upper array 
transmits a short pulse )(tg  can be obtained based on the above discussion. To treat 

the case shown in Fig. 3.1(c), let the metal plate have physical parameters 
( ))(, mm fcρ  and assume that 0m ρρ >>  and )()( 0m fcfc >>  so that the method of 

images can be adopted. If the plate is sufficiently thick such that the echoes from its 
upper and lower surfaces are well separated, then the plate can be treated as infinitely 

thick and )(teij  in Fig. 3.1(c) is equal to )()(
image

tete jiij +  in Fig. 3.1(d). Furthermore, 

)(teij  in Fig. 3.1(d) is negligible around ijtt =  in Fig. 3.1(c) [ ijt  is the time-of-flight 

and is the time needed for )(tg  to travel from transducer i  to the metal plate, then 

to transducer j  in Fig. 3.1(c)]. That is, when only ijt  is of interest, there is no need 

to calculate )(teij  since )(teij  can at most contain scattered waves relevant to 

transducer i  around ijt  and thus neglecting transducer i  does not alter the 

estimate of ijt . Therefore, to obtain ijt  one only needs to consider the configuration 

in Fig. 3.1(e). Note that )()(
imageimage

tete jiij = . Obtaining )(
image

teij  around ijt  is a 
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two-step process: the wave first propagates from plane 0=y  to plane 2yy = , and 
then propagates from plane 2yy =  to plane 22yy = . This method can still be 

applied when the object contains more cylinders with a circular cross section. 

Note that there are limitations associated with this approach: relaxation 
absorption cannot be fully taken into consideration, and the medium can contain only 
cylindrical targets with a circular cross section. Nonetheless, a case (which is the 
same as the ×1  case in Section 3.3 except for the absence of relaxation absorption) 
was used for verification. The results show that the differences in time-of-flight 
between this method and the k-space method can be ignored. 

3.3 Reconstruction without the B-mode image: Algorithm 

I 

Conventional ultrasonic transmission tomography acquires complete projection 
data over an angular range of o180  [22], so that the reconstruction quality will be 
degraded if the data set does not span the full o180 . The more data are missing, the 
poorer the resulting reconstruction quality becomes [38]–[40]. 

Limited-angle transmission tomography using linear arrays does not provide a 
complete data set. As shown in Fig. 3.2(a), the incidence and reflection angles are 
both equal to θ . Collecting all the time-of-flight data with an angle of incidence of 
θ  in Fig. 3.2(a) is effectively equal to inspecting the object at angle θ  and angle 
θ−  simultaneously in conventional transmission tomography, as shown in Fig. 

3.2(b). To have a complete data set, the maximal available θ , denoted by maxθ , has 
to be o90 . This is impossible with a linear array. Assume that the array has AN  
transducers, a pitch of Ap , and a distance between the array and the metal plate of 

AD , then it can be easily shown that 

( )







 −
= −

A

AA1
max 2

1
tan

D
pN

θ .      (3.21) 

A typical maxθ  is o6.26  with mm 35A =D  and ( ) mm 531 AA =− pN . Note 

that the data at maxθ  are not complete since only one time-of-flight can be collected 
at this angle. Also note that ( ) AA 1 pN −  is close to the array width AA pN . Thus, in 
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limited-angle transmission tomography, obtaining a large maxθ  is only possible with 

a large linear array, and hence the effect of the array size on reconstruction accuracy 
needs to be evaluated. 

 

Transmit Array 

(b)

–θθ 

Receive Array 

Object 
Image of Object

(a)
Metal Plate

θθ

Linear Array 

Object 

 

Fig. 3.2. (a) Collecting all the time-of-flight data with the angle of incidence of θ  is equivalent to (b) 

inspecting the object at angle θ  and angle θ−  simultaneously in conventional transmission 

tomography. 

Consider the configuration shown in Fig. 3.2(a). The image object consists of a 
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background of glandular material with a cylinder of fat with a radius of 4 mm at its 
center. The corresponding parameters of the different materials are listed in Table 3.1 
[12], [19]. Each array channel has a Gaussian frequency response with a center 
frequency of 5 MHz and a two-way dB 12−  fractional bandwidth of 0.6. All array 
elements are assumed to be a line source. The pitch is mm 45.0A =p  and the 

distance is mm 35=D . Sound velocity distributions were reconstructed in three 
cases corresponding to AN  values of )4( 312 × , )2( 156 ×  and )1( 78 × . 

Table 3.1. Parameters used in Fig. 3.2(a). 

 Material Sound 
velocity ∞c  

(m/s) 

Density 
ρ 

( )3g/cm

Absorption β

at 5 MHz 
(dB/cm)  

ns 201 =τ  
3

1 10)/( ×∞κκ  
ns 2002 =τ

3
2 10)/( ×∞κκ

Glandular 1521 1.05 5.68 10.76 10.34 
Fat 1471 0.94 2.68 4.91 4.72 

Tumor 1549 1.12 7.39 14.27 13.71 
 

)(lim fcc
f ∞→∞ ≡ . At f = 5 MHz the sound velocities are 1515.0 m/s, 1468.3 m/s, and 1542.7 m/s in 

glandular tissue, fat, and tumor, respectively. 

The time-of-flight data were first generated using the method described in 
Section 3.2. The attenuation resulting from relaxation absorption was neglected but 
the dependency of sound velocity c  on frequency f , also resulting from relaxation 

absorption, was taken into account by the following equation [35]: 
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where ρ  is the density of the medium, 2/1 ∞∞ = cρκ , ∞c  is the sound velocity of 

the medium when the temporal frequency f  approaches infinity, qτ  is the 

relaxation time for the q th order relaxation process, and qκ  is the relaxation 

modulus for the q th order relaxation process. Fig. 3.3(a) shows all the receive 

envelope data when the 39th channel was used on transmit in the ×1  case with 
geometrical delays compensated. The corresponding time-of-flight was extracted from 
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the envelope based on the center of gravity of the square of the envelope (i.e., the 
center of gravity with the square of the envelope as its density distribution function) 
around the peak. Note that the cylinder of fat introduced both time-of-flight errors and 
waveform distortion. The presence of severe waveform distortion will make it 
difficult to determine a reliable time-of-flight, and thus this signal should be dropped. 

In this chapter, all cases followed the rule below except for the ×4  case. Let ijE  

denote the energy of the signal around the time-of-flight ijt  received by channel j  

when channel i  is transmitted. Then ijt  (and ijt∆ ) is dropped if 

 

(a) 

 

    (b)         (c) 
Fig. 3.3. (a) The envelopes of the received signals when the 39th channel is transmitted in the ×1  case. 

Geometrical delays have been compensated. The attenuation resulting from relaxation absorption was 

neglected but the dependency of sound velocity c on frequency f, also resulting from relaxation 

absorption, was taken into account. (b) The geometrically compensated time-of-flight data in the ×1  
case. Note that all the removed ijt∆  data values are replaced by 0. (c) White at position ),( ji  means 

that the associated ijt∆  was removed. 
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∑
=

<
A

1A

125.0
N

q
iqij E

N
E .      (3.23) 

In the ×4  case, the ijt  data were inspected manually when 

312243 ,701 ≤≤≤≤ ji , or 701 ,312243 ≤≤≤≤ ji , because their corresponding 

envelopes were not severely distorted despite the energy being low. The geometrically 
compensated time-of-flight data in the ×1  case are shown in Fig. 3.3(b). Note that all 

the removed ijt∆  data values were replaced by 0. The removed transmit/receive 

combinations are shown in Fig. 3.3(c) in white. 

After the time-of-flight data were obtained, sound velocity distributions in the 
central 35-mm width were reconstructed using Algorithm I (Fig. 3.4). Here, the 
sampling intervals sx∆  and sy∆  of the sound velocity distribution in the x  and y  
directions were both 1 mm. The other parameters were m/s 1450lower =c  and 

m/s 1580upper =c . Fig. 3.4(a) and (b), Fig. 3.4(c) and (d), and Fig. 3.4(e) and (f) 

display the results for ×4 , ×2 , and ×1 , respectively. The reconstructed sound 
velocity distribution is shown in the left panels over a range from 1450 m/s to 1580 
m/s, and the sound velocity error is shown in the right panels over a range from 0 m/s 
to 65 m/s. The sound velocity error is defined as the absolute value of the difference 
between the reconstructed sound velocity and the true sound velocity at 5 MHz (i.e., 
the transmit center frequency). It is obvious that with a larger array the sound velocity 
distribution can be reconstructed more accurately. To quantify the accuracy, define 

∑
∈

−=∆
f),(

truef,
fat

),(1
Inm

cnmc
N

c ,      (3.24) 

where ),( nmc  is the reconstructed sound velocity, m/s 3.1468truef, =c  is the true 

sound velocity at 5 MHz in the fat region, fI  is the index set containing all 
coordinates ),( nm  of a rectangle locating entirely in the fat region, and fatN  is the 

number of elements in fI . A smaller c∆  indicates higher accuracy. The c∆  

values in the ×4 , ×2 , and ×1  cases were 11.8, 19.9, and 28.5 m/s, respectively. 



 24

 

    (a)           (b) 

 

    (c)           (d) 

 

    (e)           (f) 

Fig. 3.4. (a), (c), (e) Sound velocity distributions in the central 35-mm width in the ×4 , ×2 , and ×1  

cases, respectively. (b), (d), (f) Reconstruction errors in the central 35-mm width in the ×4 , ×2 , and 

×1  cases, respectively. Algorithm I was employed; therefore, no B-mode image information was used. 

Note that absolute values of the errors are displayed. Also note that these results using Algorithm I are 

inferior to those of Algorithm II, as shown in the following figures. 

The ×4  case outperformed the ×2  and ×1  cases, but the array used in that 
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case is too large ( mm 4.140AA =pN ) and may not be clinically useful. On the other 

hand, the value of maxθ  in the ×4  case is only o4.63 . In other words, the 

time-of-flight data for the ×4  case is far from a complete data set. Therefore, 
increasing the array size to enhance the quality of sound velocity distribution is 
impractical in limited-angle transmission tomography. 

3.4 Reconstruction with the B-mode image information: 

Algorithm II 

With only the time-of-flight data and the general constraints on the sound 
velocity, Section 3.3 shows that the accuracy of the sound velocity estimation is 
insufficient. This subsection uses Algorithm II, introduced in Section 2.3, in order to 
improve this. In this case, constraints are derived from the B-mode image and these 
are incorporated in the algorithm. The time-of-flight data were generated in the same 
way as described in Section 3.3. 

Consider again the configuration shown in Fig. 3.2(a). In all cases shown below 
an array with 234A =N  and mm 15.0A =p  (giving an array width of 

mm 1.35AA =pN ) was used. When generating the time-of-flight data, only every 
third channel both on transmit and receive in the array was used. The distance AD  

between the array and the metal plate was 35 mm. The other parameters were 

m/s 1450lower =c , m/s 1580upper =c , mm 5.0s =∆x , and mm 5.0s =∆y . 

The k-space method introduced in Section 3.1 was employed to generate all the 
B-mode images in this chapter. The pixel sizes used in the k-space method and the 
B-mode images are both 0.04 mm by 0.04 mm. Random perturbations to densities in 
different regions were introduced to produce speckle images since they can introduce 
acoustic impedance mismatches and therefore cause scattering. Spatial compounding 
[41] was then applied to reduce the speckle intensity variations before segmentation 
was subsequently applied. To reduce the computation time, only eight channels 
(channels 27, 53, 79, 105, 130, 156, 182, and 208) were used on transmit, and only 

receive channels with j  values obeying 26≤− ij  were used on receive when 

channel i  was fired. One subimage per transmit was reconstructed, and all eight 
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subimages were compounded into a single image. To further reduce the speckle noise, 
the compound B-mode image was low-pass filtered using a two-dimensional Gaussian 
filter with a e/1  cutoff at 0.152 mm to generate the final B-mode image. Once the 
filtered B-mode image was obtained, a single threshold was applied for segmentation. 

 
     (a)         (b) 

 
     (c)         (d) 

Fig. 3.5. (a) Image object comprising a background of glandular material with a cylinder of fat with a 

radius of 4 mm at its center. (b) B-mode image displayed with a 30-dB dynamic range. (c) Segmented 

fat region. (d) Boundary between the fat region and the background derived from the segmented fat 

region. 

An object shown in Fig. 3.5(a) was considered first. It comprised a background 
of glandular material with a cylinder of fat with a radius of 4 mm at its center. The 
random perturbations added to the densities were %5.0  and %5.2  
(root-mean-squared amplitude) for the cylinder and the background, respectively. The 
corresponding B-mode image is shown in Fig. 3.5(b). After applying a threshold to 
the processed B-mode image, the fat region was extracted as shown in Fig. 3.5(c). The 
boundary between the fat region and the background was directly derived from the 
segmented fat region by morphological dilation [42] (according to the disparity 
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between the segmented fat region and its dilated version) as shown in Fig. 3.5(d). 

 
    (a)           (b) 

 
    (c)           (d) 

 
    (e)           (f) 

Fig. 3.6. Reconstructed sound velocity distributions and reconstruction errors. (a) and (b) Case i 
(cylinder radius =  4 mm, truec,c m/s 3.1468= , and trueb,c m/s 0.1515= ). (c) and (d) Case ii (cylinder 

radius =  2 mm, truec,c m/s 3.1468= , and trueb,c m/s 0.1515= ). (e) and (f) Case iii (cylinder radius =  

6 mm, truec,c m/s 3.1468= , and trueb,c m/s 0.1515= ). Algorithm II was employed and hence the 

B-mode segmentation information was used. The simulation parameters are also listed in Table 3.2. 
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The reconstructed sound velocity distribution and the image of sound velocity 
error are shown in Fig. 3.6(a) and (b), respectively. This example is referred to as 
Case i in Table 3.2. The reconstructed sound velocity in the segmented fat region 

( reconc,c ) is 1465.7 m/s, which is only 2.6 m/s slower than the true sound velocity of fat 

at 5 MHz ( m/s 3.1468truec, =c ). Moreover, the reconstructed sound velocity in the 

background region, reconb,c , is the same as the true sound velocity of glandular 

material at 5 MHz ( m/s 0.1515trueb, =c ). Note that the subscripts c and b here stand for 

cylinder and background, respectively. Objects with different geometries and acoustic 
parameters were also evaluated. The parameters are summarized in Table 3.2 and the 
reconstructed results are shown in Fig. 3.6–Fig. 3.8 using Case i as the reference. In 
Fig. 3.6, effects of the size of the cylinder on the reconstruction accuracy are shown. 
In Fig. 3.7, the results correspond to different sound velocity in the cylinder. In Fig. 
3.8, effects of the position of the cylinder in the axial dimension are demonstrated. 
Define errors as 

true),(recon),()( ⋅⋅⋅ −=∆ ccc ,       (3.25) 

where )(⋅  denotes b or c. In all cases, the errors in the background region were 

almost zero. However, the errors in the fat region were more significant. Also note 
that in all cases, larger errors occurred at boundaries. Fig. 3.6(a) and (b), Fig. 3.6(c) 
and (d), and Fig. 3.6(e) and (f) show the estimation results corresponding to cylinders 
with radii of 4 mm, 2 mm, and 6 mm, respectively. The left panels [Fig. 3.6(a), (c), 
and (e)] are the sound velocity distributions and the right panels [Fig. 3.6(b), (d), and 
(f)] are the sound velocity errors. The cc∆  values are –2.6 m/s, –0.1 m/s, and –1.4 
m/s, respectively, and those of bc∆  are 0.0 m/s, 0.1 m/s, and 0.0 m/s, respectively. 

Fig. 3.7(a) and (b), Fig. 3.7(c) and (d), Fig. 3.7(e) and (f), and Fig. 3.7(g) and (h) 
show the sound velocity distributions and sound velocity errors corresponding to 

cylinders with sound velocities ( truec,c ) of 1468.3 m/s, 1493.2 m/s, 1505.8 m/s, and 

1568.0 m/s, respectively. The cc∆  values are –2.6 m/s, –2.8 m/s, –2.5 m/s, and 2.0 
m/s, respectively, and those of bc∆  are 0.0 m/s, 0.0 m/s, 0.0 m/s, and 0.1 m/s, 

respectively. Fig. 3.8(a) and (b), Fig. 3.8(c) and (d), and Fig. 3.8(e) and (f) show the 
sound velocity distributions and sound velocity errors corresponding to cylinders at 
different positions (center, upper, and lower, respectively). The cc∆  values are –2.6 



 29

m/s, –1.2 m/s, and –2.2 m/s, respectively, and those of bc∆  are all zero. 

 
    (a)           (b) 

 
    (c)           (d) 

 
    (e)           (f) 

Fig. 3.7. Reconstructed sound velocity distributions and reconstruction errors. (a) and (b) Case i 
(cylinder radius =  4 mm, truec,c m/s 3.1468= , and trueb,c m/s 0.1515= ). (c) and (d) Case iv (cylinder 

radius =  4 mm, truec,c m/s 2.1493= , and trueb,c m/s 0.1515= ). (e) and (f) Case v (cylinder radius =  

4 mm, truec,c m/s 8.1505= , and trueb,c m/s 0.1515= ). (g) and (h) Case vi (cylinder radius =  4 mm, 

truec,c m/s 0.1568= , and trueb,c m/s 0.1515= ). The simulation parameters are also listed in Table 3.2. 
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    (g)           (h) 

Fig. 3.7. (Continued.) 

Table 3.2. Parameters used in the cases shown in Fig. 3.6–Fig. 3.8 and the estimation results in 

simulations. 

 
Case truec,c  

(m/s) 

Cylinder 
radius 
(mm) 

cc∆  

(m/s) 

*
cc∆  

(m/s)

bc∆  

(m/s)

*
bc∆  

(m/s)

 
Cylinder position 

i 1468.3 4 –2.6 1.5 0.0 0.1 Center 
ii 1468.3 2 –0.1 5.8 0.1 0.1 Center 
iii 1468.3 6 –1.4 0.4 0.0 0.0 Center 
        
i 1468.3 4 –2.6 1.5 0.0 0.1 Center 
iv 1493.2 4 –2.8 –0.1 0.0 0.0 Center 
v 1505.8 4 –2.5 –1.3 0.0 0.0 Center 
vi 1568.0 4 2.0 –5.6 0.1 0.0 Center 
        
i 1468.3 4 –2.6 1.5 0.0 0.1 Center 

vii 1468.3 4 –1.2 1.9 0.0 0.1 5.5 mm above the center 
viii 1468.3 4 –2.2 1.3 0.0 0.0 5.5 mm below the center 

 
cc∆  and bc∆  were obtained with the boundary derived from the B-mode images. *

bc∆  and *
cc∆  

were obtained with the boundary set to perfectly match the original boundary. m/s 0.1515trueb, =c  in 
all cases. 
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    (a)           (b) 

 
    (c)           (d) 

 
    (e)           (f) 

Fig. 3.8. Reconstructed sound velocity distributions and reconstruction errors. (a) and (b) Case i (the 

cylinder is at the center). (c) and (d) Case vii (the cylinder is at an upper position). (e) and (f) Case viii 
(the cylinder is at a lower position). In all cases cylinder radius =  4 mm, truec,c m/s 3.1468= , and 

trueb,c m/s 0.1515= . The simulation parameters are also listed in Table 3.2. 
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    (a)           (b) 

 
    (c)           (d) 

 
    (e)           (f) 
Fig. 3.9. (a) Image object comprising a background of glandular material ( m/s 1521,b =∞c , 

3
b g/cm 05.1=ρ , and dB/cm 5.68b =β  at 5 MHz) with three cylinders of the same radius of 4 mm 

( m/s 1496,1,c =∞c , 3
1,c g/cm 94.0=ρ  and dB/cm 68.21,c =β  at 5 MHz in the upper-left cylinder, 

m/s 1549,2,c =∞c , 3
2,c g/cm 12.1=ρ  and dB/cm 39.72,c =β  at 5 MHz in the upper-right cylinder, and 

m/s 1471,3,c =∞c , 3
3,c g/cm 94.0=ρ  and dB/cm 2.683,c =β  at 5 MHz in the lower cylinder.). (b) 

B-mode image displayed with a 30-dB dynamic range. (c) Segmented regions. (d) Boundaries between 

the three cylinders and the background. (e) Reconstructed sound velocity distribution. (f) Sound 

velocity reconstruction error. 
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All the above cases considered only a single target in the object. A more 
complicated object comprising a background of glandular material with three 
cylinders, all with a radius of 4 mm, was also used to test Algorithm II. The geometry 
of the object is shown in Fig. 3.9(a). The first cylinder, located in the upper-left corner, 
was assigned the physical parameters of fat except for the sound velocity, which was 

set to m/s 1496,1,c =∞c , where the subscripts c and 1 denote the first cylinder, and the 

subscript ∞  indicates an infinitely high frequency. The second cylinder, located in 
the upper-right corner, was assigned the parameters of a tumor, and the third cylinder, 
located in the lower region, was assigned those of fat. All parameters are listed in 
Table 3.1. The random perturbations added to the densities of the first, second, and 
third cylinder and the background were %5.0 , %5.0 , %89.0 , and %5.2  
(root-mean-squared amplitude), respectively. The B-mode image is shown in Fig. 
3.9(b). Fig. 3.9(c) shows the segmentation result after a dB 14−  (with respect to the 
maximal intensity) threshold is applied. In this case, several smaller regions randomly 
distributed in the background were also present. For each pixel of a size of ss yx ∆⋅∆ , 
if the above-threshold area is lower than ss96.0 yx ∆⋅∆⋅ , then this pixel will be 

regarded as being outside the ROI. That is, an area ratio threshold of 0.96 was applied 
to the segmentation results shown in Fig. 3.9(c) before morphological dilation was 
applied. Therefore, these small regions were automatically removed during boundary 
extraction due to their smaller size; the boundaries are shown in Fig. 3.9(d). Note that 
removal of the smaller regions depends on the sampling intervals ( sx∆  and sy∆ ), and 

additional image processing techniques may be applied to improve boundary 
detection. The reconstructed sound velocity distribution is shown in Fig. 3.9(e) and 
the reconstruction error is shown in Fig. 3.9(f). In this case, m/s 3.0b =∆c , 

m/s 2.31,c −=∆c , m/s 2.12,c =∆c , and m/s 4.03,c =∆c . 

3.5 Discussion 

3.5.1 Accuracy of sound velocity reconstruction 

The derivation of (2.5) assumed straight-line propagation, whereas the 
time-of-flight data were generated with the effects of refraction. Nonetheless, sound 
velocity reconstruction generally still was accurate due to the use of hard constraints 
derived from the B-mode image. Besides, the time-of-flight was only used to derive 
soft constraints that were allowed to be violated, which reduced the impact of 



 34

refraction. 

Note that the segmentation method employed in this chapter produced a detected 
area smaller than the original area. The accuracy of boundary extraction also affects 
the reconstruction results. All of the eight cases described in Section 3.4 were 
repeated using the true boundaries instead of boundaries derived from the segmented 

B-mode images. The results are denoted as *
cc∆  and *

bc∆ , and are also listed in Table 

3.2. In general, the reduction in the detected area has a bigger impact on smaller 
targets since the relative error of detected area (error of area over true area) is larger 
for smaller targets and a larger relative error of detected area will result in a larger 
sound velocity estimation error. Fig. 4.9 in Section 4.5 supports this point. 

Large reconstruction errors occurred at the boundary, which is primarily due to 
refraction effects being much more significant there. Thus, either a significant portion 
of the time-of-flight data is discarded [as shown in Fig. 3.3(c)], or the remaining 
time-of-flight data have larger errors. Nonetheless, note that the “true” sound velocity 
at the boundary is not very meaningful because a sharp discontinuity in sound 
velocity is not expected in soft tissue. 

3.5.2 Effect of pitch on sound velocity reconstruction 

In the above simulations, only every third channel was used to obtain the 
time-of-flight data in order to save computation time. The effect of the number of 
channels on the accuracy of the reconstructed sound velocity was assessed, and the 
results are summarized in Table 3.3. The spatial sampling interval of the sound 
velocity distribution in the x and y directions were both 0.5 mm in all cases. The 
results show that the reconstruction accuracy does not necessarily improve when more 
channels are used. In fact, good accuracy was achieved even when using only 12 
channels with an effective pitch of 3 mm, which is much larger than the spatial 
sampling interval of the sound velocity distribution. 

The reason for the relative insensitivity of the accuracy to the pitch is that the 
time-of-flight constraints were only soft constraints and that there may be 
inconsistencies among them. Although more soft constraints may make the solution 
more reliable, the degree of inconsistency will not necessarily decrease as the number 
of soft constraints increases. Therefore, more time-of-flight data do not necessarily 
lead to a more accurate solution. However, these observations may be attributable to 
the objects under consideration having a simple geometry, and hence more studies are 
needed to better understand the performance of the algorithm with complex structures 
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and the application of time-of-flight constraints. 

In Section 3.3, a pitch of mm 45.0A =p  was used in the simulations for testing 

Algorithm I in order to reduce the computation time for the ×4  case. The 
reconstruction results shown in Table 3.3 support the conclusion that Algorithm II 
outperforms Algorithm I. 

Table 3.3. Relation between reconstruction accuracy and effective pitch. 

 Effective pitch 
over 0.15 mm 

Total number of 
channels 

Δc in cylinder 
(m/s) 

Δc in glandular 
material (m/s)  

1 234 –2.6 0.0 
2 117 –2.6 0.0 
3 78 –2.6 0.0 
4 59 –2.6 0.0 
5 47 –2.7 0.0 
6 39 –2.8 0.0 
7 34 –2.2 0.0 
8 30 –2.6 0.0 
10 24 –3.7 0.0 
12 20 –2.5 0.0 
15 16 –3.7 0.1 
20 12 –0.2 0.0 

 
The n value in the first column means that only every nth channel in the array was used; the effective 

pitch was n×0.15 mm. Case i in Table 3.2 was evaluated. The spatial sampling intervals of sound 

velocity distribution in the x and y directions were both 0.5 mm. 

3.5.3 Miscellaneous issues 

Accurate reconstruction of the sound velocity distribution would allow it to be 
used to correct for waveform distortion resulting from sound velocity inhomogeneities 
and therefore enhancement of the B-mode image quality. The results shown in this 
chapter serve as a promising first step towards achieving this long-term research 
objective. Section 6.1 discusses the efficacy of applying the sound velocity 
distribution to correcting for the waveform distortions caused by sound velocity 
inhomogeneities. Note that in addition to the sound velocity distribution being used to 
correct for the waveform distortion, it can also be used as an independent image to 
complement the B-mode image. 

To acquire the time-of-flight data, only one channel transmits at each firing. In 
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the simulations, no noise is added. In practice, however, the SNR may be insufficient 
due to attenuation and thus affecting the accuracy of time-of-flight estimation. To 
address this problem, coded excitation techniques [43] can be employed to increase 
the transmitted power while maintaining good temporal resolution. Note that an SNR 
enhancement of more than 20 dB is achievable because the code length is only limited 
by the distance between the metal plate and the array when only one channel is fired. 
Section 6.2 discusses the efficacy of applying coded excitation to collecting the 
time-of-flight data. 

Although circular objects were used throughout this chapter, there is no 
fundamental restriction on the shape of ROI detectable by the proposed technique. 
The circular shape was chosen only for computation simplicity. 

3.6 Concluding remarks 

Here we have evaluated a method for incorporating the segmentation information 
of a B-mode image into the process of sound velocity reconstruction with 
limited-angle transmission tomography by simulations. A k-space method was used to 
simulate the B-mode images, and the series solution to the scattering of a plane wave 
incident on a fluid cylinder was used to generate the required time-of-flight data. 
Effects of wave propagation such as refraction and diffraction were included in the 
generated data. Simulation results based on a 5-MHz linear array show that the sound 
velocity error was generally 1–3 m/s, with a maximum of 5.8 m/s. The radius of the 
object under investigation was 2–6 mm, and the reconstructed sound velocities are 
accurate except at the boundaries. Thus, obtaining the sound velocity distribution is 
feasible with current B-mode imaging setup using linear arrays in simulations. 
Experiments were conducted in order to further evaluate the proposed technique in 
Chapter 4. 
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Chapter 4  Experimental results—sound 

velocity 

In this chapter, a custom-made phantom containing a variety of image objects 
with differing physical properties was used to experimentally investigate the 
performance of the approach proposed in Chapter 2 and evaluated by simulations in 
Chapter 3. 

4.1 Experimental setup and methods 

A schematic of the experimental setup is shown in Fig. 4.1. The linear array 
(L6/128, STI, State College, PA) has 128A =N  channels, an element pitch Ap  of 

0.3 mm, an elevation width of 5 mm, and an elevation focus of 25 mm. The array 
channels have a center frequency of 5.57 MHz and a –6 dB bandwidth of 4.10 MHz. 
A programmable digital array system (DiPhAS, Fraunhofer IBMT, Ingbert, Germany) 
[44] capable of transmitting a short pulse from any selected channel is used to acquire 
the channel data. All channel data were transferred from the array system to the 
computer for storage and further processing via a digital I/O (input/output) card 
(PCI-7300A, ADLINK, Taiwan County, Taiwan) on the computer. When channel i  

transmits, all channels except for channel j  with 64=− ij  can receive (channel 

i  and channel j  with 64=− ij  share the same multiplexer and thus cannot be 

turned on simultaneously). That is, a channel data set { } ,64 ,,1 ,)( A ≠−≤≤ ijNjiteij  

can be collected by the array system. The transmitted pulse is a one-cycle square wave 

with a duration of µs 0.2 , and all )(teij  were sampled at 40 MHz with a vertical 

resolution of 12 bits. For each transmit/receive combination, data corresponding to 16 
consecutive firings were averaged off-line to enhance the SNR. The cross sections of 
the custom-made phantom (Dr. Ernest Madsen, Department of Medical Physics, 
University of Wisconsin-Madison, WI) are shown in Fig. 4.2(a) and (b) (top and side 
views, respectively). The corresponding parameters of the different materials 
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(mimicking different tissues in the breast), which were supplied by Dr. Madsen, are 
listed in Table 4.1. The nine cases listed in Table 4.2 were generated by moving the 
array along the x-axis. 

 

Digital Array 
System 

Computer 

+x 

+y 

Phantom 

Linear Array

 
Fig. 4.1. Schematic of the data-acquisition setup. 

Table 4.1. Parameters of the materials used in the phantom. 

 Material Sound velocity 
c at 5 MHz and

22 ℃ (m/s)

Density 
ρ

(g/cm3)

Attenuation 
coefficient α at 
5 MHz (dB/cm)

B-mode contrast 
relative to glandular 

tissue (dB) 
Glandular tissue 1522 1.03 2.74 ― 

Fat 1464 0.94 2.21 –14 
Cyst 1570 1.02 0.78 <–14 

High-attenuation 
tumor 

1547 1.10 7.36 –12 

Irregular tumor 1553 1.07 4.26 –10 
 

Note that the materials are mimicked. 
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Cyst Fat 

High-Attenuation Tumor Irregular Tumor 

Radius 2 4 6 4 4 N/A 4 4 4 4 4 
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Case I II III IV V VI VII VIII IX 
44 344 21                          

 
(b) 

Fig. 4.2. Cross sections of the phantom used in experiments. (a) Top view. (b) Side view. All the 

dimensions are in millimeters. 
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Table 4.2. Objects included in different cases and the estimation results in experiments. 

Case  ROI Sphere 
radius 
(mm) 

ROI position ΔcROI 

(m/s) 
ΔcG 
(m/s) 

I Fat 2 Center 2.6 0.3 
II Fat 4 Center 4.5 0.3 
III Fat 6 Center 4.3 0.2 
IV Cyst 4 Center 3.9 0.3 
V High-attenuation tumor 4 Center 10.5 –0.2 
VI Irregular tumor N/A Center 11.5 0.9 
VII Fat 4 6 mm above the center 4.9 0.6 
VIII Fat 4 6 mm below the center 2.5 0.0 
IX-1 Cyst 4 Upper-left corner  0.6 
IX-2 High-attenuation tumor 4 Upper-right corner 9.5 
IX-3 Fat 4 6 mm below the center 0.9 

0.6 

 
The material in the background was glandular tissue in all cases. 

4.2 Extraction of time-of-flight data 

To extract ijt∆  (the time of flight after geometrical delay compensation), the 

peak value pe  of the envelope of )(teij  around 0,ijt  (with a time window of µs 10 ) 

was found, and then ijt  (the time of flight) was set to be the time when the envelope 

crossed p2
1 e  at the rising edge of the peak. The following two rules were applied to 

remove the ijt  associated with severely distorted )(teij  around 0,ijt . First, ijt  and 

ijt∆  were ignored if 

∑
=

<
A

1A

115.0
N

q
iqij E

N
E ,      (4.1) 

where ijE  denotes the energy of the envelope of )(teij  around 0,ijt  with element 
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factor compensation. Element factors for all transmit/receive combinations were 
estimated using a channel data set collected with only water between the array and the 
metal plate. After the first step, ut∆  and lt∆  were found, where ut∆  ( lt∆ ) is a 

time value such that 95% of the ijt∆  is smaller (larger) than it and the other is larger 

(smaller) than it. Second, ijt  was dropped if 

( )lu
lu 2

2
tttttij ∆−∆>

∆+∆
−∆ .    (4.2) 

 
(a) 

 
    (b)           (c) 

Fig. 4.3. (a) Envelopes of the received signals when the 64th channel transmits in Case VIII. 

Geometrical delays and element factors have been compensated. (b) The geometrically compensated 
time-of-flight data. Note that all the removed and unavailable ijt∆  data values are replaced by 0. (c) A 

white pixel at position ),( ji  means that the associated ijt∆  value was removed or unavailable. 

Fig. 4.3(a) shows all the receive envelope data around 0,ijt∆  when the 64th channel 

was used on transmit in Case VIII with the element factor compensated. The 
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geometrically compensated time-of-flight data in Case VIII are shown in Fig. 4.3(b). 

Note that all the removed and unavailable ijt∆  data values are replaced by 0. The 

removed and unavailable transmit/receive combinations are shown in Fig. 4.3(c) in 
white, where the two vertical lines and the two horizontal lines were due to two dead 
elements of the array. The two lines at 45° were due to the multiplexer setup. 

4.3 Generation of Cimage 

Spatial compounding [41] (with 5 subapertures all having 43 channels and 
centered at channels 22, 43, 65, 86, and 107) was performed to generate B-mode 
images with reduced speckle intensity variations. The pixel size was 0.038 mm (x-axis) 
by 0.037 mm (y-axis). Dynamic focusing was performed and dynamic aperture size 
was used with the lower limit of the F-number being 1 on both transmit and receive 
when forming a subimage. The steering angle of all subapertures was limited to 
within o45± . At each pixel, the signals of all contributing subapertures were 
averaged. In Case I, the speckle SNR, defined as the mean pixel intensity over the 
standard deviation of the pixel intensity, in the ROI was raised from 0.90 to 1.86 by 
spatial compounding. To further reduce the speckle variations, the compound B-mode 
image was low-pass filtered using a two-dimensional Gaussian filter with a e/1  
cutoff at 0.152 mm to generate the final B-mode image. Once the filtered B-mode 
image was obtained, a single threshold was applied for segmentation and the regions 
in the thresholded binary image with an area smaller than 2mm π  were removed. 

For most cases (Cases I–IV, VII, and VIII) the ROIs could be extracted 
successfully by the above procedures, but morphological dilation and erosion [42] 
(which were necessary for Cases V, VI, and IX) were applied to all cases after 
thresholding in order to remove the holes in ROI candidates and make the boundaries 
more regular. The morphological structuring element was disk shaped with a radius of 
40 pixels for both dilation and erosion. The sampling intervals sx∆  and sy∆  of the 
sound velocity distribution in the x  and y  directions were 0.55 mm and 0.53 mm, 

respectively, which were different from those of the B-mode image. Therefore, after 
finding the ROIs, the resultant binary images were resampled by applying an area 
ratio threshold of 0.96. For each pixel of size ss yx ∆⋅∆  in the resampled binary image, 
if the above-threshold area was lower than ss96.0 yx ∆⋅∆⋅ , then this pixel was 

regarded as being outside the ROI. The boundaries were derived from the resampled 
ROIs by morphological dilation (according to the disparity between the ROIs and 
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their dilated versions), and with these boundaries imageC  was generated using (2.16). 

 

    (a)           (b) 

 
    (c)           (d) 

Fig. 4.4. Evaluation of Case IX. The image object comprises a background of glandular material 
( m/s 1522G =c , 3

G g/cm 03.1=ρ , and dB/cm 2.74G =α ) with three spheres, all with a radius of 4 mm 

( m/s 1570C =c , 3
C g/cm 02.1=ρ  and dB/cm 0.78C =α  in the upper-left cyst sphere; m/s 1547T =c , 

3
T g/cm 10.1=ρ  and dB/cm 36.7T =α  in the upper-right high-attenuation tumor sphere; and 

m/s 1464F =c , 3
F g/cm 94.0=ρ , and dB/cm 2.21F =α  in the lower fat sphere). (a) Filtered compound 

B-mode image displayed with a 30-dB dynamic range. (b) Segmented regions. (c) Binary image after 

removing smaller regions. (d) ROIs extracted by dilation and erosion based on the binary image in (c). 

(e) Boundaries between the three spheres and the background. (f) Reconstructed sound velocity 

distribution. 
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    (e)           (f) 

Fig. 4.4. (Continued). 

Fig. 4.4(a)–(e) show the results corresponding to different steps using Case IX as 
an example. The filtered compound B-mode image is displayed in Fig. 4.4(a) with a 
30-dB dynamic range. Fig. 4.4(b) shows the segmentation result after a –16 dB 
threshold (with respect to the maximum intensity) was applied. The binary image 
after removing regions smaller than 2mm π  is shown in Fig. 4.4(c). Morphologically 
dilating the ROI candidates and then eroding the resultant binary image extracted the 
ROIs [see Fig. 4.4(d)]. Fig. 4.4(e) shows the extracted boundaries. 

4.4 Reconstructed sound velocity images 

The sound velocity images were reconstructed using Algorithm II introduced in 

Section 2.3, using m/s 1450lower =c  and m/s 1580upper =c . All the reconstruction 

results are listed in Table 4.2. The reconstructed sound velocity distribution for Case 
IX is shown in Fig. 4.4(f) over the range 1450 m/s to 1580 m/s. Define errors as 

true),(recon),()( ⋅⋅⋅ −=∆ ccc ,      (4.3) 

where )(⋅  denotes F (fat), C (cyst), T (high-attenuation tumor), IT (irregular tumor), 

G (glandular tissue), or ROI, true),(⋅c  is the true sound velocity listed in Table 4.1, and 

recon),(⋅c  is the reconstructed sound velocity. In Case IX, m/s 6.0C =∆c , 

m/s 5.9T =∆c , m/s 9.0F =∆c , and m/s 6.0G =∆c . 
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    (a)           (b) 

 
    (c)           (d) 

 
    (e)           (f) 

Fig. 4.5. Filtered compound B-mode images (displayed with a 30-dB dynamic range) and reconstructed 

sound velocity distributions of objects containing fat spheres ( m/s 1464F =c , 3
F g/cm 94.0=ρ , and 

dB/cm 2.21F =α ) with different radii. (a) and (b): Case I (radius = 2 mm). (c) and (d): Case II 

(radius   = 4 mm). (e) and (f): Case III (radius = 6 mm). 
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    (a)           (b) 

 
    (c)           (d) 

 
    (e)           (f) 

Fig. 4.6. Filtered compound B-mode images (displayed with a 30-dB dynamic range) and reconstructed 

sound velocity distributions of objects containing spheres all with a radius of 4 mm but representing 
different tissue types. (a) and (b): Case IV (cyst; m/s 1570C =c , 3

C g/cm 02.1=ρ , and 

dB/cm 0.78C =α ). (c) and (d): Case II (fat; m/s 1464F =c , 3
F g/cm 94.0=ρ , and dB/cm 2.21F =α ). 

(e) and (f): Case V (tumor; m/s 1547T =c , 3
T g/cm 10.1=ρ , and dB/cm 36.7T =α ). 
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    (a)           (b) 

 
    (c)           (d) 

 
    (e)           (f) 

Fig. 4.7. Filtered compound B-mode images (displayed with a 30-dB dynamic range) and reconstructed 

sound velocity distributions of objects containing fat spheres ( m/s 1464F =c , 3
F g/cm 94.0=ρ , and 

dB/cm 2.21F =α ) all with a radius of 4 mm but at different positions. (a) and (b): Case VII (the sphere 

is above the center). (c) and (d): Case II (the sphere is at the center). (e) and (f): Case VIII (the sphere is 

below the center). 

The filtered compound B-mode images and reconstructed sound velocity images 
for Cases I–VIII are shown in Fig. 4.5–Fig. 4.8. Fig. 4.5–Fig. 4.7 demonstrate the 
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effects on the reconstruction accuracy of the size of the spherical objects, different 
sound velocities in the objects, and the depth of the objects, respectively. In all cases 
the errors in the background region are small. Fig. 4.5(a) and (b), Fig. 4.5(c) and (d), 
and Fig. 4.5(e) and (f) show the estimation results corresponding to fat spheres with a 
radius of 2 mm, 4 mm, and 6 mm, respectively. The left panels [Fig. 4.5(a), (c), and 
(e)] are the filtered compound B-mode images, and the right panels [Fig. 4.5(b), (d), 
and (f)] are the estimated sound velocity distributions. The ROIc∆  values are 2.6 m/s, 
4.5 m/s, and 4.3 m/s, respectively, and those of Gc∆  are 0.3 m/s, 0.3 m/s, and 0.2 m/s, 

respectively. Fig. 4.6(a) and (b), Fig. 4.6(c) and (d), and Fig. 4.6(e) and (f) show the 
filtered compound B-mode images and the sound velocity distributions corresponding 
to spheres consisting of different tissues (cyst, fat, and tumor, respectively). The 

ROIc∆  values are 3.9 m/s, 4.5 m/s, and 10.5 m/s, respectively, and those of Gc∆  are 

0.3 m/s, 0.3 m/s, and –0.2 m/s, respectively. Fig. 4.7(a) and (b), Fig. 4.7(c) and (d), 
and Fig. 4.7(e) and (f) show the filtered compound B-mode images and the sound 
velocity distributions corresponding to fat spheres at different positions (upper, center, 
and lower, respectively). The ROIc∆  values are 4.9 m/s, 4.5 m/s, and 2.5 m/s, 
respectively, and those of Gc∆  are 0.6 m/s, 0.3 m/s, and 0.0 m/s, respectively. Finally, 

Fig. 4.8(a) and (b) show the filtered compound B-mode image and the sound velocity 
distribution for Case VI, respectively. In this case m/s 5.11IT =∆c , m/s 9.0G =∆c , 

and the original sound velocity difference between the irregular tumor and the 
glandular background is 31 m/s, as shown in Table 4.1. Fig. 4.8(b) exhibits large 
errors in boundary extraction that affect the accuracy of sound velocity estimation. 

 
    (a)           (b) 

Fig. 4.8. (a) Filtered compound B-mode image (displayed with a 30-dB dynamic range) and (b) 

reconstructed sound velocity distribution of an object containing an irregular tumor. m/s 1553IT =c , 
3

IT g/cm 07.1=ρ , and dB/cm 26.4T =α . 
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4.5 Discussion 

To evaluate the sensitivity of the sound velocity error to the area of the 
segmented ROI, the ROIs in Case I and III were artificially changed and the 
corresponding sound velocity distributions were then estimated. Every new ROI was 
generated from the original ROI by adding pixels on the outer boundary or removing 
pixels on the inner boundary. Ten different ROIs were randomly generated given a 
total ROI area. Fig. 4.9(a) and (b) show the curves of mean sound velocity difference 
(between the new estimated sound velocity and the original one in the ROI) versus 
ROI area difference for Case I and III, respectively. The ROI area difference was 
normalized with respect to the nominal area (i.e., 2mm 4π  and 2mm 36π  for Case I 
and III, respectively). Also shown in Fig. 4.9 are the error bars specifying ± one 
standard deviation. Note that the standard deviation corresponding to the zero ROI 
area difference was zero since the ROI was fixed at this point and no randomly 
generated ROIs were generated. It was found that the sound velocity difference is less 
than ±3 m/s when the ROI area difference is within ±5% in these cases. 

 
    (a)           (b) 

Fig. 4.9. The curves of mean sound velocity difference (between the new estimated sound velocity and 

the original one in the ROI) versus ROI area difference in percentage for (a) Case I and (b) Case III. 

Ten different ROIs were randomly generated given an ROI area. The error bars specify ± one standard 

deviation. Note that the standard deviation corresponding to the zero ROI area difference was zero 

since the ROI was fixed at this point and no randomly generated ROIs were generated. 

The imaging setup shown in Fig. 1.1 treats image objects as two-dimensional. 
Although the image objects in experiments were three-dimensional, generally good 
sound velocity estimation accuracy was achieved. The reconstruction errors are larger 
for the high-attenuation and irregular tumors. A new phantom is required in order to 
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experimentally investigate whether or not the higher attenuations result in larger 
errors. The large error in the boundary extraction for Case VI partially contributes to 
the sound velocity estimation error in that case. 

    (a)           (b) 

 

    (c)           (d) 

Fig. 4.10. The ray-tracing diagrams for (a) Case II and (b) Case IV, and the geometrically compensated 

time-of-flight data in (c) Case II and (d) Case IV. Note that the colormap in (d) for Case IV has been 

reversed for display purposes. 

The sound velocity error in ROI tends to be positive in experiments (this 
phenomenon did not occur in simulations). One possible reason is the expansion 
(contraction) of the fat (cyst, high-attenuation tumor, or irregular tumor) region in the 
B-mode image with respect to its original size – a lower (higher) sound velocity is 
equivalent to a longer (shorter) distance. Because the area of the background is much 
larger than that of the ROI, the sound velocity estimation is more sensitive to the 
sound velocity error in the background than that in the ROI. Therefore, the 
reconstructed sound velocity in the background will only be slightly affected, and the 
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absolute value of the difference of the reconstructed sound velocities between the ROI 
and the background tends to decrease as the area of ROI increases. Another potential 
source of error is a refraction artifact. The ray-tracing diagrams shown in Fig. 4.10(a) 
and (b) for Cases II and IV, respectively, illustrate that the number of transmit/receive 
combinations with times of flight affected by the sphere is larger in Case IV than in 
Case II. This point is further demonstrated by Fig. 4.10(c) and (d), which show the 
geometrically compensated time-of-flight data for Cases II and IV, respectively (note 
that the colormap for Case IV has been reversed for display purposes). Thus, a higher 
sound velocity in the ROI will increase its effective area when measuring the 
time-of-flight data. Consequently, the area in B-mode image is effectively contracted 
during reconstruction. 

In a few cases there were multiple reflections between the array and the top 
surface of the phantom, which made finding the peak of the echo from the metal plate 
difficult. This explains why we used the rising edge rather than the peak to estimate 
the time of flight. 

The shadows of the high-attenuation and irregular tumors are clearly seen in 
B-mode images for Cases V, VI, and IX. These shadows complicated the extraction of 
ROIs. If only the tissue type is important, then sound velocity images are not 
necessary in these simple cases. However, if the image contains more complicated 
objects, B-mode image alone may be insufficient for identifying different tissue types. 
In this case, the sound velocity distribution can be used to complement conventional 
B-mode ultrasound and to enhance breast cancer detection in the situations where a 
fat region may be incorrectly diagnosed as a tumor, because the fat region typically 
has a sound velocity lower than the glandular tissue whereas a tumor typically has a 
higher sound velocity. Based on the result of Case I, a tumor with a diameter as small 
as 4 mm may be distinguishable using B-mode ultrasound with the help of the sound 
velocity information. 

4.6 Concluding remarks 

In this chapter, we experimentally investigated the technique proposed in 
Chapter 2, including Algorithm II in Section 2.3, for reconstructing the sound velocity 
distribution in the breast. The experimental setup, which consisted of a 128-channel 
array, a digital array system, a phantom, and a computer, allowed acoustic data 
acquisition for simultaneous B-mode image formation and limited-angle tomographic 
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sound velocity reconstruction. The reconstruction algorithm incorporates the 
segmentation information from the B-mode image of the same object. Nine cases 
were evaluated by scanning the phantom at different positions. Although the image 
objects were three-dimensional, good sound velocity estimation results were obtained 
using the one-dimensional array, with sound velocity errors being less than 5 m/s in 
eight of eleven ROIs. Although the errors associated with tumor objects were larger, 
successful tissue classification was still possible using the information that the sound 
velocity should be higher in the ROI than in the background for those cases. 
Therefore, this method makes obtaining the sound velocity distribution feasible with 
the current B-mode imaging setup using linear arrays. 
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Chapter 5  Experimental results—attenuation 

coefficient 

5.1 Introduction 

When a single-frequency acoustic plane wave propagates in a homogeneous soft 
tissue, its amplitude A  can be assumed to exponentially decay with the propagation 

distance pd  [22], [45]. Specifically, 

p
0

10log20 d
A
A α=







− ,      (5.1) 

where 0A  is the original amplitude and α  is the attenuation coefficient of the tissue. 

In general, the attenuation coefficient varies from tissue to tissue. For example, the 
attenuation coefficient of cancerous tissue is higher than that of cyst [19]–[21]. 
Therefore, the attenuation coefficient distribution in the breast can help detect cancer. 

In this chapter, the attenuation coefficient distributions were reconstructed for the 
nine cases described in Chapter 4 using the convex programming formulation. 
Furthermore, in order to improve the estimation accuracy, a technique based on the 
angular spectrum method was developed to compensate the effects of refraction on 
the attenuation data. 

5.2 Reconstruction method 

In addition to B-mode image and sound velocity distribution, the setup shown in 
Fig. 1.1 can also be used to measure the attenuation coefficient distribution. Let 

{ } A,1 ,)( Njiteij ≤≤ , be the complete channel data set with an object between the array 

and the metal plate, and { })(w, te ij  be the complete channel data set with water 
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between. With )(teij  [ )(w, te ij ], the echo )(taij  [ )(w, ta ij ] reflected from the bottom 

metal plate corresponding to the same transmit/receive combination can be obtained. 

Let );,( fyxα  [ )();,( ww ffyx αα = ] and )( fAij  [ )(w, fA ij ] denote the attenuation 

coefficient distribution in the object (water) and the temporal spectrum of )(taij  

[ )(w, ta ij ], respectively. Assume the straight-line propagation along the path ijL  and 

define 

( ) ( )[ ])(log20)(log20)( w,1010 fAfAfA ijijij −−−=∆ ,    (5.2) 

then 

[ ]∫ −=∆
ijL

ij dlffyxfA )();,()( wαα        (5.3) 

based on (5.1). Since the attenuation coefficient of water is negligible in general [22], 
(5.3) can be reduced to 

∫=∆
ijL

ij dlfyxfA );,()( α .      (5.4) 

(5.4) is analogous to (2.3). Thus, following the procedure described in Section 2.1, 
(5.4) becomes 

aLα ∆= ,         (5.5) 

where the attenuation coefficient distribution )( fαα =  is an 1×MN  column vector 

consisting of the attenuation coefficients at the grid points, and the attenuation data 

)( faa ∆=∆  is an [ ] 12/)1( AA ×+NN  column vector consisting of )( fAij∆ . 

The convex programming formulation introduced in Section 2.2 was used to 
solve (5.5) [32]. Two kinds of a priori knowledge of )( fα  are used. First, the 

attenuation coefficient is assumed to be in ],[ upperlower αα  (where 

dB/cm 0lower =α , dB/cm 2upper f=α , and f  is in the unit of MHz in this 
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chapter) and, therefore, )( fα  must belong to 

{ }MNlxC l
MN ≤≤∈∈= 1 ],,[: upperlowernattenuatio ααRx .    (5.6) 

Second, the B-mode image information is used. That is, )( fα  must belong to 

imageC . 

Express a∆  as [ ]T2/)1(21 AA +∆∆∆=∆ NNAAA La  and define 

{ } 2/)1(,,2,1 ,,: AA +=∆=∈=∆ NNiAC ii
MN

Ai
LlxRx ,   (5.7) 

then an attenuation coefficient distribution imagenattenuatio CC I∈x  minimizing the cost 

function (i.e., the total amount of violation of the attenuation data) 

∑
+
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∆=Φ
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1
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NN

i
Ai i

Cdw xx      (5.8) 

can be found by taking x  as the limit of the sequence { }nx . The 

imagenattenuatio0 CC I∈x  is an initial attenuation coefficient distribution, and  
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1
1
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






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i
nCinCCnnnn iA

xxxx γγλλ I . (5.9) 

Each case in this chapter employed uniform weighting (i.e., each attenuation value is 
equally important), 5.0=nλ  for all 0≥n , and 1=γ . 

5.3 Experimental results 

The attenuation coefficient distributions at =0f 5 MHz (close to 5.57 MHz, the 

center frequency of the array) were reconstructed. To extract the attenuation data, the 

time p,ijt  corresponding to the peak of the envelope of )(teij  around 0,ijt  (with a 
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time window of µs 10 ) was found, and then )(taij  was extracted using the following 

equation: 



 +<≤−−+

≡
                    elsewhere                                         0

2/2/     )();2/(
)( p,p,p,T TttTttertTtw

ta ijijijij
ij ,     (5.10) 

where T  is the duration of Tw , and 
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is a Tukey window with a taper ratio of r  [46]. )(w, ta ij  was similarly extracted 

from )(w, te ij . In soft tissues, the attenuation coefficient is approximately a linear 

function of frequency in the MHz range [22], [45]. That is, 

fyxfyx ),();,( αα ′≅ .      (5.12) 

Therefore, instead of (5.2), the following equation was used to estimate )( 0fAij∆  in 

order to increase the estimation stability: 

( ) ( )[ ]{ }∫
∆+

∆−

−−−
∆

=∆
2/

2/
w,1010

0
0

0

0

)(log20)(log201)(
ff

ff
ijijij dffAfA

f
f

f
fA .   (5.13) 

In this chapter, =T 4 μ s, =r 0.4, and =∆f 4 MHz. The transmit/receive 

combinations removed when extracting the time-of-flight data were also removed 
here due to the invalidity of the assumption of straight-line propagation. 

The attenuation coefficient images were reconstructed using the method 
introduced in Section 5.2 for the nine cases described in Chapter 4. All the 
reconstruction results are listed in Table 5.1. The errors are defined as 
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)()( 0true),(0recon),()( ff ⋅⋅⋅ −=∆ ααα ,     (5.14) 

where )(⋅  denotes F (fat), C (cyst), T (high-attenuation tumor), IT (irregular tumor), 

G (glandular tissue), or ROI, )( 0true),( f⋅α  is the attenuation coefficient listed in Table 

4.1, and )( 0recon),( f⋅α  is the reconstructed attenuation coefficient. In all cases the 

errors in the background region are small, but the errors in the ROI(s) are larger. Note 

that =)( 0reconF, fα 0 dB/cm in Case I and =)( 0reconT, fα 10 dB/cm in Case V have 

reached the lower bound and the upper bound for the attenuation coefficient, 
respectively. Also note that all Fα∆  values are negative, and all Cα∆ , Tα∆ , and 

ITα∆  values are positive. This is mainly attributable to the energy redistribution 

caused by refraction. The fat sphere, which has a sound velocity lower than that of the 
background, tends to distribute more energy to the transmit/receive combinations with 
a path across the ROI, while the cyst sphere, high-attenuation tumor sphere, and the 
irregular tumor region, all having a sound velocity higher than that of the background, 
act contrary. 

Table 5.1. The estimation results of the attenuation coefficients at =0f 5 MHz. 

Case  ROI Sphere 
radius (mm) 

ROI 
position 

trueROI,α

(dB/cm)
ROIα′∆ / ROIα∆  
(dB/cm) 

Gα′∆ / Gα∆  
(dB/cm) 

I Fat 2 Center 2.21 –1.50/–2.21 –0.08/0.02 
II Fat 4 Center 2.21 –0.39/–1.22 –0.07/0.06 
III Fat 6 Center 2.21 –0.14/–0.78 –0.08/0.04 
IV Cyst 4 Center 0.78 0.87/3.64 –0.17/–0.17
V HA tumor 4 Center 7.36 1.76/2.64 –0.09/–0.09
VI Irregular 

tumor 
N/A Center 4.26 0.87/1.45 0.29/0.26 

VII Fat 4 Up 2.21 1.69/–0.24 –0.14/0.02 
VIII Fat 4 Down 2.21 –1.30/–1.19 –0.02/0.11 
IX-1 Cyst 4 Upper-left 0.78 –0.07/2.82 
IX-2 HA tumor 4 Upper-right 7.36 1.78/2.53 
IX-3 Fat 4 Down 2.21 –1.73/–2.05 

0.00/0.02 
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5.4 Experimental results with compensation for the 

refraction effects 

 );,( fyxW

1yy =

0=y

)( ),( ),;,( 00 ffcfyxc α

x+

y+

 
(a) 

 Transducer i, 1)( =fG

Transducer imagej , )(ˆ fAij

Dy =

0=y

y = 2D

)( , ),,( 00 fcyxc α

 
(b) 

Fig. 5.1. Illustration of the technique for finding an estimate )(ˆ fAij  of )( fAij . (a) Basic form of the 

problem. (b) Configuration used to find )(ˆ fAij . 

The estimation accuracy of the attenuation coefficient distributions will improve 
if the effects of refraction on the attenuation data can be compensated. Using the 
angular spectrum method [37], such effects can be roughly estimated by numerical 
propagation through the image object [15], [47], despite the density distribution and 
backscattering being ignored. Note that the effects of attenuation coefficient 
inhomogeneities on the attenuation data are also ignored since it is unknown at the 
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moment. With reference to Fig. 5.1(a), consider an acoustic wave );,( fyxW  
propagating along the y+  direction in a linear fluid medium with a sound velocity 
distribution of );,( fyxc , a background sound velocity of )(0 fc , and an attenuation 
coefficient of )(0 fα  independent of the position. The problem is: find );,( 1 fyxW  
assuming that );0,( fxW  is known. 

);,( 1 fyxW  can be found by finding );d,( fyxW , );d2,( fyxW , … , and 

);d,( fyNxW y  sequentially with 1d yyN y = . Assume that );d,( fyqxW  has been 

found. Let the angular spectrum of );d,( fyqxW  be ( )fyqkW x ,d;~ , i.e., 

( )∫= xxx dkxjkfyqkWfyqxW )exp(,d;~
2
1);d,(
π

,     (5.15) 

then 
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( ) ( )[ ]{ } 1
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1 /sincos
20
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0 10/d2exp),d;(
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xkcfyjfykH

α

π  [48].  (5.18) 

An estimate )(ˆ fAij  of )( fAij  can be obtained using the above method by 

considering the configuration in Fig. 5.1(b), in which )( fG  is the temporal spectrum 
of the transmitted signal, ),();,( yxcfyxc = , Dy ≤≤0  (the distance between the 

array and the metal plate), is the reconstructed sound velocity distribution and 
independent of f , 0c  is the sound velocity in the background, and ff 5.0)(0 =α  
dB/cm with f  in the unit of MHz. Note that );2,();,( fyDxcfyxc −=  for 

DyD 2≤≤ . The estimate of )(w, fA ij , )(ˆ
w, fA ij , was similarly obtained with 

0);,( cfyxc =  and 0)( =fα . Define 
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( ) ( )[ ])(ˆlog20)(ˆlog20)(ˆ
w,1010 fAfAfA ijijij −−−=∆ ,    (5.19) 

then a vector )( faa ′∆=′∆  consisting of )(ˆ)()( fAfAfA ijijij ∆−∆=′∆  can be built. 

After solving 

aLα ′∆=          (5.20) 

using the convex programming formulation introduced in Section 5.2, the attenuation 
coefficient distribution with compensation is 

)( 00 fα+=′ αα .      (5.21) 

All the reconstruction results with the refraction effects being (partly) 

compensated are also listed in Table 5.1. The errors are denoted as )(⋅′∆α . The 

reconstructed attenuation coefficient images are shown in Fig. 5.2–Fig. 5.5. Fig. 
5.2–Fig. 5.4 demonstrate the effects on the reconstruction accuracy of the size of the 
spherical objects, different sound velocities and attenuation coefficients in the objects, 
and the depth of the objects, respectively. In all cases the errors in the background 
region are small. Fig. 5.2(a) and (b), Fig. 5.2(c) and (d), and Fig. 5.2(e) and (f) show 
the estimation results corresponding to fat spheres with a radius of 2 mm, 4 mm, and 6 
mm, respectively. The left panels [Fig. 5.2(a), (c), and (e)] are the estimated 
attenuation coefficient images with compensation, and the right panels [Fig. 5.2(b), 
(d), and (f)] are the estimated attenuation coefficient images without compensation. 
The ROIα′∆  ( ROIα∆ ) values are –1.50 (–2.21) dB/cm, –0.39 (–1.22) dB/cm, 
and –0.14 (–0.78) dB/cm, respectively, and those of Gα′∆  ( Gα∆ ) are –0.08 (0.02) 

dB/cm, –0.07 (0.06) dB/cm, and –0.08 (0.04) dB/cm, respectively. Fig. 5.3(a) and (b), 
Fig. 5.3(c) and (d), and Fig. 5.3(e) and (f) show the estimated attenuation coefficient 
images with and without compensation corresponding to spheres consisting of 
different tissues (cyst, fat, and tumor, respectively). The ROIα′∆  ( ROIα∆ ) values are 

0.87 (3.64) dB/cm, –0.39 (–1.22) dB/cm, and 1.76 (2.64) dB/cm, respectively, and 
those of Gα′∆  ( Gα∆ ) are –0.17 (–0.17) dB/cm, –0.07 (0.06) dB/cm, and –0.09 

(–0.09) dB/cm, respectively. Fig. 5.4(a) and (b), Fig. 5.4(c) and (d), and Fig. 5.4(e) 
and (f) show the estimated attenuation coefficient images with and without 
compensation corresponding to fat spheres at different positions (upper, center, and 
lower, respectively). The ROIα′∆  ( ROIα∆ ) values are 1.69 (–0.24) dB/cm, –0.39 
(–1.22) dB/cm, and –1.30 (–1.19) dB/cm, respectively, and those of Gα′∆  ( Gα∆ ) 

are –0.14 (0.02) dB/cm, –0.07 (0.06) dB/cm, and –0.02 (0.11) dB/cm, respectively. 
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Finally, Fig. 5.5(a) and (b), and Fig. 5.5(c) and (d) show the estimated attenuation 
coefficient images with and without compensation for Case VI and Case IX, 
respectively. In Case VI, =′∆ ITα 0.87 dB/cm ( =∆ ITα 1.45 dB/cm) and =′∆ Gα 0.29 
dB/cm ( =∆ Gα 0.26 dB/cm). In Case IX, =′∆ Cα –0.07 dB/cm ( =∆ Cα 2.82 dB/cm), 

=′∆ Tα 1.78 dB/cm ( =∆ Tα 2.53 dB/cm), =′∆ Fα –1.73 dB/cm ( =∆ Fα –2.05 dB/cm), 
and =′∆ Gα 0.00 dB/cm ( =∆ Gα 0.02 dB/cm). Except for Case VII and VIII, the 

reconstruction accuracy in the ROI was improved with the compensation technique. 
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    (a)           (b) 

 
    (c)           (d) 

 
    (e)           (f) 

Fig. 5.2. Estimated attenuation coefficient images, with and without compensation, of objects 

containing fat spheres ( m/s 1464F =c , 3
F g/cm 94.0=ρ , and dB/cm 2.21F =α ) with different radii. (a) 

and (b): Case I (radius   = 2 mm). (c) and (d): Case II (radius = 4 mm). (e) and (f): Case III 

(radius   = 6 mm). 
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    (a)           (b) 

 
    (c)           (d) 

 
    (e)           (f) 

Fig. 5.3. Estimated attenuation coefficient images, with and without compensation, of objects 

containing spheres all with a radius of 4 mm but representing different tissue types. (a) and (b): Case 
IV (cyst; m/s 1570C =c , 3

C g/cm 02.1=ρ , and dB/cm 0.78C =α ). (c) and (d): Case II (fat; 

m/s 1464F =c , 3
F g/cm 94.0=ρ , and dB/cm 2.21F =α ). (e) and (f): Case V (tumor; m/s 1547T =c , 

3
T g/cm 10.1=ρ , and dB/cm 36.7T =α ). 
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    (a)           (b) 

 
    (c)           (d) 

 
    (e)           (f) 

Fig. 5.4. Estimated attenuation coefficient images, with and without compensation, of objects 

containing fat spheres ( m/s 1464F =c , 3
F g/cm 94.0=ρ , and dB/cm 2.21F =α ) all with a radius of 4 

mm but at different positions. (a) and (b): Case VII (the sphere is above the center). (c) and (d): Case II 

(the sphere is at the center). (e) and (f): Case VIII (the sphere is below the center). 
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    (a)           (b) 

 
    (c)           (d) 

Fig. 5.5. Estimated attenuation coefficient images with and without compensation. (a) and (b): Case VI. 

The image object contains an irregular tumor. m/s 1553IT =c , 3
IT g/cm 07.1=ρ , and dB/cm 26.4T =α . 

(c) and (d): Case IX. The image object contains three spheres, all with a radius of 4 mm ( m/s 1570C =c , 
3

C g/cm 02.1=ρ  and dB/cm 0.78C =α  in the upper-left cyst sphere; m/s 1547T =c , 3
T g/cm 10.1=ρ  

and dB/cm 36.7T =α  in the upper-right high-attenuation tumor sphere; and m/s 1464F =c , 
3

F g/cm 94.0=ρ , and dB/cm 2.21F =α  in the lower fat sphere). 

5.5 Concluding remarks 

In this chapter, the attenuation coefficient distributions were reconstructed for the 
nine cases described in Chapter 4 using the convex programming formulation. 
Furthermore, in order to improve the estimation accuracy, a technique based on the 
angular spectrum method was developed to compensate the effects of refraction on 
the attenuation data. With this technique, the reconstruction accuracy in the ROI was 
improved except for Case VII and VIII. To verify the efficacy of the compensation 
technique for complex objects, more studies are needed. 



 66

The attenuation coefficient distribution in the breast can be used to enhance the 
detection of the breast caner. Using only the sound velocity image, a fat region is 
distinguishable from a tumor, but a cyst may not be due to their close sound velocities. 
Since the experimental results show that the difference between the reconstructed 
attenuation coefficients in a cyst and a tumor is large, when a cyst and a tumor are 
indistinguishable using the B-mode image and the sound velocity image, the 
attenuation coefficient image can be used to help distinguish them. 
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Chapter 6  Discussion 

6.1 Aberration correction 

Sound velocity inhomogeneities results in waveform distortions in B-mode 
pulse-echo data, including phase aberrations and wavefront amplitude distortions 
[5]–[9]. With the imaging setup shown in Fig 1.1, the reconstructed sound velocity 
distribution can be used to perform aberration correction and hence improve the 
B-mode image quality. 

Metal Plate 

Glandular Tissue 

Linear Array (NA = 128 channels, pitch pA = 0.3 mm)

x+

y+

DA = 36 
mm 

Fat Cylinder 
(radius = 4 mm)

Focal Plane 

12 mm

12 mm

x = 0

 
Fig. 6.1. Image object considered in this chapter. It comprises a glandular tissue with a cylinder of fat 

with a radius of 4 mm at its center. 

Consider the image object shown in Fig. 6.1. The k-space method [33] 
introduced in Section 3.1 was used to generate the required data. The parameters of 
the fat cylinder and the glandular tissue are those listed in Table 4.1 and each array 
channel has a Gaussian frequency response with a center frequency of 5 MHz and a 
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two-way dB 12−  fractional bandwidth of 0.6. The B-mode image and the sound 
velocity distribution were reconstructed using the same settings as those used in 
Chapter 4 except for all channel data being available in this case. When calculating 
the beam patterns and the point spread functions (PSFs), only the central 50 elements 
in the array were used (i.e., the F-number was 1.6). Fig. 6.2(a) shows the normalized 
transmit beam patterns at the focal plane corresponding to three different conditions: 
without the fat cylinder in the image object (solid line), with the fat cylinder in the 
image object (dashed line), and with the fat cylinder in the image object and 
aberration correction using a technique similar to that developed in Section 5.4 for 
compensating the refraction effects (dotted line). The normalized receive beam 
patterns and two-way beam patterns are shown in Fig. 6.2(b) and (c), respectively, and 
Fig. 6.2(d)–(f) shows the two-way PSFs without the fat cylinder in the image object, 
with the fat cylinder in the image object, and with the fat cylinder in the image object 
and aberration correction, respectively, with a 60-dB dynamic range. The simulation 
results show that using the sound velocity distribution to compensate for the 
waveform distortions can improve the focusing performances. 

 
    (a)           (b) 

Fig. 6.2. (a) Normalized transmit beam patterns at the focal plane. (b) Normalized receive beam 

patterns at the focal plane. (c) Normalized two-way beam patterns at the focal plane (d) Two-way PSF 

without the fat cylinder in the image object. (e) Two-way PSF with the fat cylinder in the image object. 

(f) Two-way PSF with the fat cylinder in the image object and with aberration correction. The PSFs are 

displayed with a 60-dB dynamic range. 
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    (c)           (d) 

 
    (e)           (f) 

Fig. 6.2. (Continued.) 

6.2 SNR enhancement 

To acquire the time-of-flight data, only one channel transmits at each firing. In 
this thesis, no noise was added in the simulations and the SNR was enhanced with 
averaging in experiments. However, in order to reduce the time required for collecting 
the time-of-flight data, no averaging will be preferable. In this situation, the SNR may 
be insufficient due to attenuation and thus affecting the accuracy of time-of-flight 
estimation. To address this problem, coded excitation techniques [43] can be 
employed to increase the transmitted power while maintaining good temporal 
resolution. Note that an SNR enhancement of more than 20 dB is achievable because 
the code length is only limited by the distance between the metal plate and the array 
when only one channel is fired. 

The time-of-flight data collected by transmitting a coded signal were compared 
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with those collected by transmitting a wideband pulse. The image object and the array 
were those shown in Fig. 6.1. The coded signal was a binary Tukey-windowed chirp 
described in Section A.4.1 with MHz 50 =f , MHz 25.3=∆f , µs 10=T , and 

15.0=r . The other parameters were MHz 80ADCs, =f , 36=M , 7.3=β , 

05625.0c =f , 10=D , and 12
w =σ . The compression filter was designed using the 

method described in Section A.3. The mainlobe was defined as the central nine points 
of the compressed signal, 80f =N , and =dBs  –40 dB. Fig. 6.3 shows the 

geometrically compensated time-of-flight data collected by transmitting the binary 
Tukey-window chirp (dashed line) and the wideband pulse (solid line) at the 64th 
channel. Note that all the removed time-of-flight data were replaced with 0. The 
time-of-flight data corresponding to different transmitting signals are close to each 
other for the same transmit/receive combinations; therefore, applying coded excitation 
to SNR enhancement when collecting the time-of-flight data may be feasible. 

 
Fig. 6.3. The geometrically compensated time-of-flight data collected by transmitting the binary 

Tukey-window chirp (dashed line) and the wideband pulse (solid line) at the 64th channel. The image 

object and the array were those shown in Fig. 6.1. Note that all the removed time-of-flight data were 

replaced with 0. 
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Chapter 7 Conclusions and future works 

In this thesis, a limited-angle transmission tomography setup using a linear array 
was investigated. This setup can be used to obtain the B-mode image, the sound 
velocity distribution, and the attenuation coefficient distribution. To improve the 
estimation accuracy of sound velocity distribution, a new reconstruction algorithm 
incorporating segmentation information from the B-mode image of the same object 
was proposed. Simulation results and experimental results demonstrate the efficacy of 
the algorithm. Furthermore, with the sound velocity distribution, waveform distortions 
caused by sound velocity inhomogeneities can be partly compensated. When 
reconstructing the attenuation coefficient distribution, in addition to incorporating 
information from the B-mode image, the sound velocity distribution of the same 
object was used to compensate the effects of refraction in order to improve the 
estimation accuracy. The efficacy of the compensation technique was demonstrated 
using experimental data. 

To enhance the detection of breast cancer, B-mode image, sound velocity 
distribution, and attenuation coefficient distribution can be applied in order. When a 
region cannot be identified using the B-mode image, this region can be rejected as a 
tumor if its sound velocity is lower than a threshold (e.g., 1500 m/s). If the sound 
velocity in this region is higher, the attenuation coefficient can then be used to 
distinguish a tumor from a cyst. 

Future works include an efficient implementation of the reconstruction 
algorithms, realization of coded excitation, further investigation on the application of 
the sound velocity information and attenuation coefficient information to aberration 
correction, and performance evaluation of the technique in clinical situations. 
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Appendix A  Arbitrary waveform coded 

excitation using bipolar square wave pulsers 

in medical ultrasound 

This appendix presents a new coded excitation scheme that efficiently 
synthesizes codes for arbitrary waveforms using a bipolar square wave pulser. In a 
coded excitation system, pulse compression is performed to restore the axial 
resolution. If the system can transmit waveforms with specific spectral characteristics, 
pulse compression at the receiver – which typically involves inverse filtering – can be 
implemented more efficiently. However, such a transmitter requires the generation of 
arbitrary waveforms and is therefore more expensive. In other words, a trade-off is 
necessary between the compression performance and the transmitter cost. Here we 
propose a method that preserves the low-cost advantage of a bipolar pulser while 
achieving approximately the same compression performance as an arbitrary waveform 
generator. The key idea of the proposed method is the conversion of a nonbinary code 
(i.e., requiring an arbitrary waveform generator) with good compression performance 
into a binary code (i.e., requiring only a bipolar pulser) by code translation and code 
tuning. The code translation is implemented by sending the nonbinary code into a 
virtual one-bit sigma-delta modulator, and the code tuning involves minimizing the 
root-mean-square error between the resultant binary code and the original nonbinary 
code by sequential and iterative tuning, whilst taking the transducer response into 
account. Tukey-windowed chirps – which have good compression performance – of 
different durations (16, 20, and 24 µs), all with a taper ratio of 0.15, a center 
frequency of 2.5 MHz, and an equivalent bandwidth of 1.5 MHz, were converted into 
binary Tukey-windowed chirps that were compared with pseudochirps (i.e., direct 
binary approximations of the original chirp) over the same spectral band. The bit rate 
was 40 MHz. Simulation results show that the use of binary Tukey-windowed chirps 
can reduce the code duration by 20.6% or the peak sidelobe level by 6 dB compared 
to the commonly used pseudochirps. Experimental results obtained under the same 
settings were in agreement with the simulations. Our results demonstrate that arbitrary 
waveform coded excitation can be realized using bipolar square wave pulsers for 
applications in medical ultrasound. 
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A.1 Introduction 

Coded excitation has been studied for many years in medical ultrasound [43], 
[49]–[62]. It is primarily used to either improve the signal-to-noise ratio (SNR) 
without increasing the excitation voltage or lower the excitation voltage without 
sacrificing the SNR  [43], [49]–[51]. Other applications of coded excitation include 
increasing the frame rate and improving resolution [52], enhancing the detection of 
contrast agent [53], increasing the depth of field [54], improving the SNR in finite 
amplitude distortion based harmonic imaging [55], enhancing the generation of 
harmonics by contrast agent microbubbles [56], [57], and suppressing selected 
harmonic components in nonlinear imaging [58]. 

In this study, coded excitation is treated as an approach to improving the SNR 
under the condition of a fixed peak acoustic power. In a coded excitation system, a 
wide transmit bandwidth is maintained while the transmit pulse length is increased. 
Thus, the axial resolution can be preserved at the receiver with pulse compression. If 
multiple firings along the same direction are allowed, the use of (orthogonal) Golay 
coded excitation [50] makes pulse compression straightforward, in which case the 
axial sidelobes after pulse compression are eliminated by filtering and by cancellation 
in the coherent sum of the received signals corresponding to different firings. 
However, pulse compression becomes more challenging when only single firing is 
allowed for each beam direction, since only filtering can be used to restore the axial 
resolution. In this study, we only consider the single-firing case.  

The performance of pulse compression is generally characterized by the 
mainlobe width (related to the axial resolution), the sidelobe level (related to the 
dynamic range and contrast resolution), and the SNR improvement. Given a code, 
once the filter length is fixed, the more stringent the constraints [such as the mainlobe 
width or the peak sidelobe level (PSL)] imposed on the compression results, the lower 
the output SNR is. Furthermore, the filter must be extended when the constraints 
cannot be satisfied. Therefore, the code must be properly designed to meet the system 
requirements. 

Achieving optimal pulse compression performance requires the ability to 
generate an arbitrary transmit waveform in order to realize the desired spectral 
characteristics. However, an arbitrary waveform generator is expensive. Here we 
propose a method that preserves the low-cost advantage of a bipolar pulser while 
achieving compression performance similar to that of an arbitrary waveform generator. 
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The key idea of the proposed method is the conversion of a nonbinary code into a 
binary code by code translation and code tuning. The code translation is implemented 
by sending the nonbinary code into a virtual one-bit sigma-delta modulator, and the 
code tuning involves minimizing the root-mean-square error between the resultant 
binary code and the original nonbinary code by sequential and iterative tuning using 
the output of the sigma-delta modulator as the initial condition, whilst taking the 
transducer response into account. It is shown that good compression performance can 
be achieved by using the converted binary code instead of the original code. Hence, 
the proposed method can be used to effectively realize arbitrary waveform coded 
excitation with bipolar pulsers. 

This appendix is organized as follows. Section A.2 describes the method used to 
translate an arbitrary code into a binary code, and the method used to tune the binary 
code. Section A.2.4 introduces the formulas for designing the compression filter. 
Section A.3 demonstrates the efficacy of the proposed method using simulations and 
experimental data. Section A.4 discusses characteristics, applications, and extensions 
of the proposed method, and the appendix concludes in Section A.5. 

A.2 Code conversion 

The overall goal of code conversion is to convert a nonbinary code into a binary 
code that exhibits similar compression performance. A two-step method was 
developed to achieve this goal. The first step uses a sigma-delta modulator to translate 
the nonbinary code into a temporary binary code. As shown in Section A.2.3, this 
temporary code only exhibits acceptable compression performance when the bit rate 
is excessive, and hence a second step is needed. The algorithm introduced in Section 
A.2.4 is employed as the second step to tune the temporary code into a new code 
which has improved compression performance. 

A.2.1 Sigma-delta modulation 

Let )(tx  be a band-limited continuous time signal and )(nx  be its 
corresponding discrete time signal uniformly sampled at sf : 

s/
)()(

fnt
txnx

=
= .        (A.1) 

In this Appendix, t  denotes the time, and the letters n, k, p, q, and l within 
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parentheses denote discrete time indices. 

 

Delay 
x(n) 

Integrator 
One-bit Quantizer 

— 

u(n) v(n) y(n) 

e(n) 

 

Fig. A.1. Block diagram of the first-order one-bit sigma-delta modulator. 

Fig. A.1 shows a block diagram of a first-order one-bit sigma-delta modulator 
[63], where )(ne  is the quantization error. Note that the entire system is in the 

discrete domain because the modulator is only used for discrete code conversion (and 
not analog-to-digital conversion). Without loss of generality, assume that the input 
signal )(nx  is bounded by V±  and that the output signal )(ny  is within }1,1{ −+ . 

The quantizer will not be overloaded if 1=V  and 2)0( ≤v , (i.e., 1)( ≤ne  for all 

0≥n ). Based on Fig. A.1, 

)()()( nenynv −= ,        (A.2) 

[ ] [ ]
)1()1(        

)1()1()1()1()1()1()(
−−−=

−−−+−−−=−+−=
nenx

nenynynxnvnunv
.   (A.3) 

Thus, 

)1()()1()( −−+−= nenenxny .     (A.4) 

If sf  is much higher than the bandwidth of )(nx , )(nx  can be efficiently 
reconstructed by appropriately filtering )(ny . 

A.2.2 Code translation 

Let )(tx  be the desired band-limited waveform for coded excitation. The goal is 

to build a binary version of the original code such that after being filtered by the 
transducer, the filtered binary waveform is similar to the filtered version of the 
original code. In other words, the transducer’s frequency response is used as the 
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reconstruction filter in a sigma-delta modulator. We first choose a sampling frequency 
sf  and discretize )(tx  into )(nx , then send the sequence )(nx  into the 

sigma-delta modulator shown in Fig. A.1. The output signal )(ny  of the modulator is 
the corresponding binary code of )(tx  with a bit rate of sf , and the actual 

transmitted signal is 

( )∑ −Π+=
n

ntfnyfty ss )1();( ,     (A.5) 

where 



 ≤≤

=Π
otherwise  0

10 if  1
)(

t
t .      (A.6) 

A.2.3 Preliminary evaluation 

Let )(t th  be the impulse response of the transducer and ⊗  denote convolution. 
It is desirable for )()()( tt ththtx ⊗⊗  to have a flat spectrum over the passband so 

that compression, which typically involves inversion filtering, can be efficiently 
implemented at the receiver. Since )(t th  can be viewed as the reconstruction filter 
for the sigma-delta modulator, a higher sf  is desired such that )();( ts thfty ⊗  is 
approximately the same as )()( t thtx ⊗ . However, sf  is also the bit rate of the 

binary code and must be within a certain range due to hardware limitations of the 
bipolar pulser. 

The effects of the bit rate on pulse compression are illustrated using a 
Tukey-windowed chirp [59] as an example. Specifically, 

Ttttffrtwtx ≤≤

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



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22

2sin);()( 2
0T

απ ,    (A.7) 

where 0f  is the carrier frequency, f∆  is the bandwidth of the linear chirp, T  is 
the pulse duration, α  is the slope of the linear chirp (i.e., Tf /∆=α ), and 
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is a Tukey window with a taper ratio of r  [46]. The compression filter )(c th  is 

chosen to be a windowed matched filter: 

TttTtTfftwth ≤≤
















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




 ∆

−⋅= 0 ,)(
2

)(
2

2sin)()( 2
0Cc

απ ,   (A.9) 

where )(C tw  is a Chebyshev window with a sidelobe attenuation of 90−  dB [64]. 

The signal 

)()()()()( cttc thththtxtx ⊗⊗⊗=       (A.10) 

is the ideal pulse-echo compressed signal and is used as a reference to evaluate the 
pulse-echo compression results at different bit rates: 

)()()();();( cttssc thththftyfty ⊗⊗⊗= .      (A.11) 

Let MHz 5.20 =f , MHz 85.1=∆f , µs 20=T , 3.0=r , and the transducer 
have a Gaussian frequency response with a center frequency of 0f  and a dB 6−  
bandwidth of 1.5 MHz. Fig. A.2 shows the normalized envelopes of )(c tx  (solid line) 
and );( sc fty  for =sf 40, 100, and 200 MHz (dotted line, dash-dotted line, and 
dashed line, respectively). Fig. A.2 demonstrates that );( sfty  with a higher sf  has 

lower axial sidelobes after compression. 

 

Fig. A.2. Normalized envelopes of )(c tx , and );( sc fty  for =sf 40, 100, and 200 MHz. 

A.2.4 Code tuning 

Fig. 2 shows that the PSL exceeds –30 dB with a bit rate of 40 MHz, and that a 
rate of 200 MHz is needed to suppress the PSL to the –40 dB level. Such a high bit 
rate is not acceptable in most systems. In addition to the filtering approach commonly 



 78

used in the literature [1], [13], tuning of the output code )(ny  of the sigma-delta 

modulator is performed in this study to further improve the compression results. 

Fig. A.3. Flow diagram for code tuning. 
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    (a)           (b) 

 
    (c)           (d) 
Fig. A.4. (a) )()( t thtx ⊗ . (b) )()MHz 40;( t thty ⊗ . (c) )()MHz 40;( t thty ⊗′ . (d) Normalized 

envelopes of )(c tx  (solid line), )MHz 40;(c ty  (dotted line), and )MHz 40;(c ty′  (dashed line). 

The algorithm for tuning an N-bit code )(ny , 10 −≤≤ Nn , into a new code 
)(ny′  is illustrated using the flow diagram shown in Fig. A.3. We define 

[ ] [ ] )()();()( ts thtxftynyd ⊗−= ,     (A.12) 

where ⋅  denotes the 2L  norm; then [ ])(nyd  is a measure of the similarity 

between );( sfty  and )(tx . If )(ny  is tuned into a code )(temp,1 ny  such that 

[ ] [ ])()(temp,1 nydnyd < , )(temp,1 ny  is considered better than )(ny  and will be the 

current candidate for the final code )(ny′ . If a code )(temp,2 ny  generated by tuning 

)(temp,1 ny  satisfies [ ] [ ])()( temp,1temp,2 nydnyd < , )(temp,2 ny  will become the new 
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candidate for )(ny′ . The process continues until the candidate code cannot be further 
updated. In this algorithm, any new candidate for )(ny′  is different from the current 
candidate in at most 2N  ( 162 =N  in this Appendix) consecutive bits, and the start 
index of the 16 bits is shifted sequentially and iteratively until the similarity to )(nx  

cannot be further improved. 

Fig. A.4(a)–(c) show )()( t thtx ⊗ , )()MHz 40;( t thty ⊗ , and 
)()MHz 40;( t thty ⊗′ , respectively. The parameters are the same as those used in 

Section A.2.3. Fig. A.4(d) shows the normalized envelopes of )(c tx  (solid line), 
)MHz 40;(c ty  (dotted line), and )MHz 40;(c ty′  (dashed line). Fig. A.4 demonstrates 

that tuning a code can significantly improve the compression performance. 

A.3 Design of the compression filter 

This section presents the design principles of the compression filter. In this study, 
pulse compression is realized at baseband. 

A.3.1 Design criterion 

Assume that the digitized echo signal is 

[ ]
ADCs,/ttsrf )()();()(

fnt
ththftyny

=
⊗⊗′=′ ,     (A.13) 

where ADCs,f  is the sampling rate of the analog-to-digital converter (ADC) at the 

receiver. The )(rf ny′  is demodulated into a baseband signal 

( )[ ]ADCs,0rfKbb /2exp)()()( fnπfjnynhny −⋅′⊗=′ ,     (A.14) 

where )(K nh  is a Kaiser-windowed finite impulse response low-pass filter [65], i.e., 

[ ]( )[ ] Mn
I

MMnI
Mn

Mnfnh ≤≤
−−

−
−

= 0 ,
)(

)2//()2/(1
)2/(

)2/(2sin)(
0

2/12
0c

K β
β

π
π ,  (A.15) 

where )(0 ⋅I  represents the zeroth-order modified Bessel function of the first kind, 

cf  is the 6−  dB cutoff frequency, )1( +M  is the filter length, and β  is a shape 
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parameter. The ][bb ny′  is then D  times downsampled to obtain 

)()( bbd Dnyny ′=′ .       (A.16) 

Given a compression filter )(cd, nh , the compressed signal is 

)()()( cd,dcd, nhnyny ⊗′=′ .       (A.17) 

Let )(d nn  and )(cd, nn  denote the noise after downsampling and compression, 

respectively, and define the autocorrelation function of a random process )(ns  as 

{ })()()( * knsnsEkRs −= ,       (A.18) 

where the asterisk denotes complex conjugation and E  denotes the statistical 
expectation operator; then [66] 

)()()()( cd,cd,dcd,
khkhkRkR nn −⊗⊗= ∗        (A.19) 

and the ensemble-averaged noise power after pulse compression is )0(
cd,nR . If the 

peak of the compressed signal is normalized to unity by scaling the filter coefficients, 

the inverse of )0(
cd,nR  is the output SNR. 

Given a filter length fN , let m  denote the index of the peak position of 

)(cd, ny′ , slI  denote the index set of the sidelobes, s specify the predetermined 

allowable PSL, and ss log20dB = . The goal is to find a compression filter )(o nh′  

such that )0(
cd,nR  is minimized under the constraints of 1)(cd, =′ my  and 

slcd, for   )( Insny ∈≤′  [i.e., )(o nh′  maximizes the output SNR while maintaining the 

axial resolution and dynamic range specified by slI  and s, respectively]. 

Unfortunately, this problem cannot be solved systematically, so the above formulation 
is slightly modified to the following: find the optimal compression filter )(o nh  
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resulting in the minimal )0(
cd,nR  under the constraints of 1)(cd, =′ my , and 

{ })(Re cd, ny′ , { } slcd, for   2/)(Im Insny ∈≤′ , where {}⋅Re  and {}⋅Im  denote the 

real part and the imaginary part, respectively. That is, 

{ }
{ }





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∈≤′
∈≤′

=′

=

slcd,

slcd,

cd,

o

for   2/)(Im
for   2/)(Re

1)(
 subject to   )0(minarg)(

cd,
cd,

Insny
Insny

my
Rnh nh

.  (A.20) 

A.3.2 Formulation for finding the optimal compression filter 

Given a filter length of fN  [i.e., )(cd, nh  is nonzero only for 10 f −≤≤ Nn ], 

then 

HhhH
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,      (A.21) 

where 

[ ]Tfcd,cd,cd, )1()1()0( −≡ Nhhh Lh ,      (A.22) 

H  is an ff NN ×  Hermitian matrix (i.e., HHH = ) and 

( ) )(
d

qpRnpq −≡H ,        (A.23) 

T denotes transpose, and H denotes the Hermitian (i.e., conjugate transpose). Because 

( ) ( )∗== HhhHhhHhh HHHH ,     (A.24) 

{ } 0Im H =Hhh  and 

( )THH HhhHhh = .      (A.25) 

Let { } rRe HH ≡ , { } iIm HH ≡ , { } rRe hh ≡ , { } iIm hh ≡ , { } )()(Re rd kyky ≡′ , 



 83

{ } )()(Im id kyky ≡′ , and 1−≡j , then 
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[ ]Tfiiifrrrr, )1()1()()1()1()( +−−−−−+−−= NnynynyNnynynyn LLy

,                  (A.30) 

and 

[ ]Tfrrrfiiii, )1()1()()1()1()( +−−+−−= NnynynyNnynynyn LLy . 

(A.31) 
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Thus the constraint 1)(cd, =′ my  can be formulated as 

0  and  1 T
i,

T
r, == gygy mm ,       (A.32) 

and { } 2/)(Re cd, sny ≤′  and { } 2/)(Im cd, sny ≤′  can be formulated as 
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ssss
nnnn ≤−≤≤−≤ gygygygy .  (A.33) 

(A.21), (A.26), (A.32) and (A.33) show that (A.20) is a quadratic programming 
problem with a convex feasible set [67]. Furthermore, G  is positive definite (i.e., 

0T >Ggg  for all g  nonzero) since )0(
cd,

T
nR=Ggg . Therefore, if the constraints 

can be satisfied using a filter length of fN , the optimal compression filter )(o nh  of 

this length exists, is unique, and can be found [67]. 

A.4 Performance of the proposed method 

In this section, the method introduced in Section A.2 is applied and compared 
with the pseudochirp approach proposed in [43]. The pseudochirp is the binary 
version of the original chirp signal which can also be implemented using a bipolar 
square wave pulser. All codes operate at a sampling frequency (or bit rate) of 40 MHz. 
The mainlobe is defined as the central nine points of the compressed signal, with the 
rest of the signal being defined as the sidelobe region. 

A.4.1 Simulation results 

In the simulations, the additive noise sampled by the ADC was assumed to be a 

white noise )(w nn  with a variance of 2
wσ . Therefore, 

( )[ ]{ }
Dnl

flπfjlnlhnn
=

−⋅⊗= ADCs,0wKd /2exp)()()(      (A.34) 

and 
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Note that )()( 2
ww

kkRn δσ= , where )(kδ  is a discrete-time impulse [65]. 

A chirp )(cp nx  with a duration of T  and a sampling frequency of sf  can be 

defined as 
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where TfN s= , and its corresponding pseudochirp )(pc nz  is defined by 
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The following pseudochirp signal was used to evaluate its performance in SNR 
enhancement: 

( )∑ −Π=
n

ntfnzftz spcspc )();( .      (A.38) 

The transducer was assumed to have a Gaussian frequency response with a center 
frequency of 2.5 MHz and a –6 dB bandwidth of 1.5 MHz. The other parameters were 

MHz 20ADCs, =f , 18=M , 7.3=β , 1125.0c =f , 5=D  (i.e., corresponding to a 

sampling rate after downsampling, ds,f , of 4 MHz), 12
w =σ , MHz 5.20 =f , and 
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MHz 5.1=∆f . Fig. A.5(a) shows the downsampled baseband signal )(dpc, nz  for 

µs 12=T  (dashed line) and the compressed signal )(cd,pc, nz  corresponding to 

64f =N  and =dBs  –40 dB (solid line). The optimal SNR, which corresponds to the 

minimal )0(
cd,nR  in (A.20), is 15.0 dB. Fig. A.5(b) is a plot of the optimal SNR 

versus fN  corresponding to =dBs  –40 dB and µs 12=T . The figure shows that 
the optimal SNR increases with fN . 

 
    (a)           (b) 

 
    (c)           (d) 

Fig. A.5. (a) The demodulated and downsampled pseudochirp with T = 12 µs (dashed line) and the 
compressed signal corresponding to 64f =N  and =dBs  –40 dB (solid line). (b) The curve of optimal 

SNR versus fN  corresponding to =dBs  –40 dB for the pseudochirp with T = 12 µs. (c) The curves 

of optimal SNR versus T ′  corresponding to =dBs  –40 dB for the pseudochirps with T = 12 µs to 24 

µs with a step of 2 µs. The characteristic curve of the pseudochirp corresponding to =dBs  –40 dB is 

also shown here as a thick solid line. (d) The characteristic curves of pseudochirps corresponding to 

=dBs  –40 dB to –58 dB with a step of –3 dB. 
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Define ( )ds,f / fNTT +=′  as the total temporal duration of the compressed 

signal. The performance of a code is determined by the optimal SNR, assuming T ′  
and dBs  are fixed. Plots of the optimal SNR versus T ′  corresponding to =dBs  –40 
dB and µs 12=T  to µs 24  with a step of µs 2  are shown in Fig. A.5(c) for the 

pseudochirps. At a given T ′ , the maximum of the optimal SNRs corresponding to 
various T  values are found. A curve connecting such points is also shown in Fig. 
A.5(c) as a thick solid line. This curve is called the characteristic curve of the 
pseudochirp at =dBs  –40 dB. In this format, a code with a (vertically) higher curve 

outperforms a code with a lower curve. Seven characteristic curves of pseudochirps 
corresponding to =dBs  –40 dB to –58 dB with a step of –3 dB are shown in Fig. 

A.5(d). These curves were subsequently used to evaluate the performance of the 
binary Tukey-windowed chirps. 

Tukey-windowed chirps [defined in (A.7) and denoted by );(Tc Ttx ] were 
converted into binary Tukey-windowed chirps [denoted by );(bTc Tny′ ] using the 
method presented in Section A.2. All Tukey-windowed chirps had MHz 5.20 =f , 

MHz 625.1=∆f , and a taper ratio of 0.15. With these settings, the –12 dB 
bandwidths of a Tukey-windowed chirp and a pseudochirp with MHz 5.20 =f  and 

MHz 5.1=∆f  are the same. Because 1);(Tc ≤Ttx , overloading did not occur in the 

sigma-delta modulator. To make the transmitted peak acoustic power associated with 
the binary Tukey-windowed chirp the same as that associated with the pseudochirp, 
the transmitted signal was scaled according to 

);(
π
4);( bTcbTc TtyTty ′=′′ .       (A.39) 

The factor π/4  is the magnitude of the fundamental frequency of a periodic square 

wave with an amplitude of 1. Other parameters were MHz 20ADCs, =f , 18=M , 

7.3=β , 1125.0c =f , 5=D , and 12
w =σ . 

Fig. A.6(a)–(h) are plots of the optimal SNR versus T ′  for binary 
Tukey-windowed chirps corresponding to =dBs  –40 dB to –61 dB with a step of –3 

dB, respectively. In each figure panel, the curves corresponding to three binary 
Tukey-windowed chirps are shown as thick solid lines from top to bottom: 

)µs 42 ;(bTc ny′ , )µs 02 ;(bTc ny′ , and )µs 16 ;(bTc ny′ . Each panel of the figure includes 
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the characteristic curves of pseudochirps for comparison. The characteristic curve 
corresponding to the same PSL is shown as a thick dashed line, and the others are 
shown as thin solid lines. Fig. A.6 shows that using a binary Tukey-windowed chirp 
improves the SNR by up to 2 dB relative to using a pseudochirp given an dBs  and a 
T ′  since, given an dBs , the turning-point positions (which represent more efficient 

code/filter combinations) in the curves for binary Tukey-windowed chirps are 
generally 1–2 dB higher than the characteristic curves of pseudochirps. Taking a 1-dB 
SNR improvement as an example, this means that using a binary Tukey-windowed 
chirp instead of a pseudochirp results in a ( ) %6.20%100101 10/1 =⋅− −  reduction in 

code duration and dead zone because the SNR improvement is approximately 
proportional to the code duration. Moreover, comparing the turning-point positions in 
the curves for binary Tukey-windowed chirps with respect to the characteristic curves 
of pseudochirps shows that using a binary Tukey-windowed chirp in general results in 
a PSL that is 6 dB lower than that when using a pseudochirp. Fig. A.6(h) shows that 

)µs 42 ;(bTc ny′  performs worse than )µs 02 ;(bTc ny′  and )µs 16 ;(bTc ny′  at a lower 

dBs  level. This may reflect that the code-tuning algorithm finds a better code than the 
original code )µs 42 ;(bTc ny , rather than the best code. 

 
    (a)           (b) 

Fig. A.6. The curves of optimal SNR versus T ′  for binary Tukey-windowed chirps generated by 
simulations. (a) =dBs  –40 dB. (b) =dBs  –43 dB. (c) =dBs  –46 dB. (d) =dBs  –49 dB. (e) 

=dBs  –52 dB. (f) =dBs  –55 dB. (g) =dBs  –58 dB. (h) =dBs  –61 dB. In each panel, the curves 

corresponding to three binary Tukey-windowed chirps are shown from top to bottom as thick solid 
lines: )µs 42 ;(bTc ny′ , )µs 02 ;(bTc ny′ , and )µs 16 ;(bTc ny′ . Also shown in each panel are the 

characteristic curves of pseudochirps for comparison. The characteristic curve corresponding to the 

same PSL is shown as a thick dashed line; the others are shown as thin solid lines. 
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    (c)           (d) 

 
    (e)           (f) 

 
    (g)           (h) 

Fig. A.6. (Continued.) 

A.4.2 Experimental results 

Fig. A.7 shows the experimental setup. A transducer with a diameter of 25.4 mm 
and a focal length of 71.1 mm (V304, Panametrics, Waltham, MA) was used to 
transmit and receive the ultrasonic signal. The image target was a nylon wire with a 
diameter of 0.2 mm placed 68.7 mm from the transducer. The pulse-echo signal from 
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the wire and its spectrum obtained by using a pulser/receiver (PR5800, Panametrics) 
to transmit and receive are shown in Fig. A.8(a) and (b), respectively. A waveform 
generator (DAC200, Signatec, Corona, CA) was used to generate the coded signal at a 
sampling rate of 200 MHz (i.e., there are five samples per bit) with an amplitude 
resolution of 12 bits. The pulser/receiver was used to provide a 60 dB gain to the echo 
signal. The amplified echo was then digitized by an ADC (PCI-9820, ADLINK, 

Taipei, Taiwan) at a sampling rate of 60 MHz (i.e., MHz 60ADCs, =f ) with an 

amplitude resolution of 14 bits. The transmit and receive timing was controlled by a 
function/arbitrary waveform generator (33120A, Agilent, Palo Alto, CA), which 
generated a 1-kHz trigger signal for the waveform generator and the ADC. 

 Agilent 
33120A 

SYNC 

ADLINK 
PCI-9820

CH0 TRG IO

Signatec 
DAC200

Analog OutputTrigger 

Panametrics 
Model 5800 

R RCVR OUT

transducer 

water 
wire 

 
Fig. A.7. Block diagram of the experimental setup. 

 
    (a)           (d) 

Fig. A.8. (a) The pulse-echo signal and (b) the corresponding spectrum of the signal obtained from the 

wire using a pulser/receiver to transmit and receive. 
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Because the noise was not white in this setup, a dummy experiment was 

conducted in order to estimate )(
d

kRn . A total of 4000 records were acquired at 

16000 samples per record in the absence of a transmit signal. The parameters were 

54=M , 7.3=β , 0375.0c =f , and 15=D  (i.e., =ds,f  4 MHz). The )(
d

kRn  

was estimated from )(d nn  using the following equation [66]: 

∑
∑

∈

∈

∗ −
=

n

n

In

In
n

knnnn
kR

1

)()(
)(

d d

d
,      (A.40) 

where nI  is an index set. The power spectral density of )(d nn , obtained by taking 

the Fourier transform of )(
d

kRn , is shown in Fig. A.9. Electromagnetic interference 

manifested as several spikes in the power spectral density in this setup. An experiment 
was also conducted using a one-cycle square wave with a duration of 0.4 µs and an 
amplitude of 4/π  V as the transmitted signal. The SNR at baseband was 14.8 dB, 
and this value was used as a reference in the subsequent experiments. 

 
Fig. A.9. The measured power spectral density of )(d nn . 

The codes (seven pseudochirps and three binary Tukey-windowed chirps) 
evaluated in Section A.4.1 were here evaluated experimentally. The transmitted signal 
levels were 4/π±  V and 1±  V for the pseudochirp and the binary 
Tukey-windowed chirp, respectively, in order to maintain a constant peak acoustic 

power for all cases. The echo signal ( dbTc,y′  or dpc,z ) from the wire was estimated 

using 16000 records to reduce noise and to design the compression filter. The output 
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SNR corresponding to each compression filter was estimated using )(d nn . The SNR 

improvement using coded excitation is defined as the output SNR using coded 
excitation minus 14.8 dB (i.e., the SNR reference). The thick solid lines in Fig. 
A.10(a)–(h) show the optimal improved SNR versus T ′  for binary Tukey-windowed 
chirps corresponding to =dBs  –40 dB to –61 dB with a step of –3 dB, respectively. 

In each panel of the figure, the curves corresponding to the three binary 
Tukey-windowed chirps, )µs 42 ;(bTc ny′ , )µs 02 ;(bTc ny′ , and )µs 16 ;(bTc ny′ , are 

shown from top to bottom. Each figure panel also contains the characteristic curves of 
pseudochirps corresponding to =dBs  –40 dB to –58 dB with a step of –3 dB, for 

comparison. The characteristic curve corresponding to the same PSL is shown as a 
thick dashed line, and the others are shown as thin solid lines. The experimental 
results again show that using a binary Tukey-windowed chirp instead of a pseudochirp 
reduces the code duration by at least 20.6% or the PSL by 6 dB. 

 
    (a)           (b) 

Fig. A.10. The curves of optimal SNR versus T ′  for binary Tukey-windowed chirps obtained from 
experiments. (a) =dBs  –40 dB. (b) =dBs  –43 dB. (c) =dBs  –46 dB. (d) =dBs  –49 dB. (e) 

=dBs  –52 dB. (f) =dBs  –55 dB. (g) =dBs  –58 dB. (h) =dBs  –61 dB. In each panel, the curves 

corresponding to three binary Tukey-windowed chirps are shown from top to bottom as thick solid 
lines: )µs 42 ;(bTc ny′ , )µs 02 ;(bTc ny′ , and )µs 16 ;(bTc ny′ . Also shown in each panel are the 

characteristic curves of pseudochirp corresponding to =dBs  –40 dB to –58 dB with a step of –3 dB 

for comparison. The characteristic curve corresponding to the same PSL is shown as a thick dashed line; 

the others are shown as thin solid lines. 
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    (c)           (d) 

 
    (e)           (f) 

 
    (g)           (h) 

Fig. A.10. (Continued.) 

A.5 Discussion 

The code-tuning algorithm introduced in Section A.2.4 does not guarantee the 
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smallest [ ] )()();( ts thtxfty ⊗−′ , since the compression performance could be 

improved by using other algorithms such as a genetic algorithm [68]. Furthermore, 
other metrics could be adopted for the error between the original nonbinary code and 
its corresponding binary code. 

Let the bit duration be the inverse of the bit rate, the shortest time between any 
two consecutive transitions in the code is equal to the bit duration using the proposed 
method. One inherent restriction in this study is that a transition always occurs at an 
instant equal to an integral multiple of the bit duration. This restriction is not 
necessary and can be removed. For example, assume that the shortest switching time 
of the pulser is limited to 25 ns and that the clock rate of the system is 200 MHz, then 
the bit rate of the code can be set to 200 MHz instead of 40 MHz but the time between 
any two consecutive transitions is limited to be larger than or equal to five clock 
cycles in order not to violate the minimal switching time (25 ns). With this scheme, 
similarity between the original nonbinary code and its corresponding binary code will 
increase. This subject is currently under investigation. 

The application of the proposed method for code conversion is not limited to 
SNR improvement. In [53], [54], the codes are used for special purposes (as 
mentioned in Section A.1), non-binary, and inflexible; the proposed method for code 
conversion can be applied to those cases to eliminate the need for arbitrary waveform 
generators. The selected error metric results in the fundamental component in the 
binary code dominating its similarity to the corresponding nonbinary code, and the 
signal integrity of higher harmonics is not controlled. Therefore, for cases in which 
the higher harmonics are desired [55]–[58], the applicability of the method must be 
further investigated. 

A.6 Concluding remarks 

This appendix proposes a method for exciting nonbinary codes using bipolar 
square wave pulsers. A nonbinary code is converted into a binary code by code 
translation and code tuning such that the desired waveform can be transmitted using a 
bipolar pulser. Tukey-windowed chirps were converted with different durations (16, 
20, and 24 µs), all with a taper ratio of 0.15, a center frequency of 2.5 MHz, and an 
equivalent bandwidth of 1.5 MHz, into binary Tukey-windowed chirps that were 
compared with pseudochirps over the same spectral band. The bit rate was 40 MHz. 
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Simulation results showed that using a binary Tukey-windowed chirp instead of a 
pseudochirp reduces the code duration by 20.6% when the constraints on PSL and the 
SNR improvement are fixed. Moreover, using a binary Tukey-windowed chirp can in 
general lower the PSL by 6 dB relative to that when using a pseudochirp if the total 
duration and the SNR improvement are fixed. Experimental results under the same 
settings were in agreement with the simulations. Although the converted binary code 
is only an approximation of the original code after convolving with the impulse 
response of the transducer, the proposed method is successful at improving the SNR. 
With our method, the low-cost advantage of bipolar pulsers is preserved while the 
compression performance of the coded excitation system is enhanced in medical 
ultrasound. The proposed method for code conversion can also be used to eliminate 
the need for an arbitrary waveform generator in other applications, such as pulse 
inversion imaging [53] and dynamic transmit focusing [54]. 
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