Rz o®+F TRIEFFY A

L

hERERIET - TR K

## K-space * F 3 A5 R IFm N 6 2

ik e R e /FJ

Ultrasonic Vector Velocity Estimation in
Swept-scan Using a K-space Approach

FidERE &

PR e £



#F 5 & 2 20MHz e0B A 3§ A B ok Sias LR mpicene o 2 8 P s
sk R0 IR A T FOE L SR TR ATOTIEL 0 B ow ROk Mk RER Y H -
T~ PBRFR O S RPERGRT 0 a2 LR 5 Ry a3
(step scan) » igfE = Z A F ALPF 0 R ETEOL TR o ¥ - AL TRF RS
FF po chBpir(swept scan) P E R IFER i 7 B ETE B F]pt i & ffﬁ‘fﬁtﬁz\- {fctps
o &E%&%ﬂﬁi\?ﬂ?ﬁﬁ’“ et 3P A B AR ko Rm F R mij FH eI
B33 FAVRAGORE LM AR AR P PRI SR MR R RFAF
BRI B A AR R B SR - BaTh R B

“::J"’v /2‘;—: o

A2 A - ay B A (LS k-space) kK & 1t 4 s e o
MR BRIPE R A PP B e RSSO AT (T o
B0 PO S 2 RE IS A0 A ehs MATSE) o 30t AR EOT B R R 0 AR S
QL'FF‘F%TLEB“‘A’K PR R g b ‘“**iP BRBERGE DR LZERE LT RE

-ERBEATRB B A PR D - BAS kspace (i e £ 3t
%éoAﬂﬂ%ﬁ%ﬁwﬁﬁhwW@%%%?wﬁ,:% S o gl eh s A e )
* 4SMHz e 4 4 s kiRl £ 8 R B = p enBE kiR o F sk R BT ATt it

BB P2 N HFESABE AR TN o R E NS e g AR B

LR R Y A A k—space 22 VR AR A e T L TR
o X RES YRR \%a?#wm PR B RAALFR ) EFEGS LE

_B’_ /uLAo “f‘?‘i é‘; 4 o



Abstract

The rapid developments in high-frequency ultrasound systems (operating at
higher than 20 MHz) have allowed visualization of fine tissue structures and
assessment of small vessels with slow flows. Due to the lack of high-frequency arrays,
however, most current high-frequency systems use mechanically scanned,
single-element transducers that are moved through a series of discrete positions. This
scan technique, called the step scan, is relatively time consuming and cannot provide
flow information in real-time. An alternative technique, called the swept scan,
involves continuous scanning a transducer and is capable of improving the data
acquisition time. Although the swept-scan technique is currently employed in
high-frequency ultrasound systems, the continuous transducer movement may have
non-negligible effects on accuracy of velocity estimation. It is therefore the purpose of
this thesis to thoroughly investigate such effects, and to further develop a new

quantitative flow estimation method.

In this thesis, a spatial frequency domain (i.e., k-space) approach is employed to
quantify the effects of swept scanning on the spectral-broadening-based vector
velocity estimation method. It is shown that the k-space representation of a 2-D
moving object is equivalent to a Doppler-RF frequency domain representation, and
that transducer movement in the swept-scan technique results in a change in Doppler
bandwidth. The spectral broadening caused by swept scanning introduces velocity
estimation bias and variance that are not present in the step-scan technique. In order to
correct such effects and improve velocity estimation accuracy, a robust vector velocity
estimation method is developed based on the proposed k-space approach. Both
simulations and in vitro experiments were performed to evaluate performance of the
proposed vector velocity estimator. Furthermore, in vivo measurements of mouse tail
vessels were also conducted using a 45-MHz transducer. The results demonstrate that
the proposed vector velocity estimator is feasible in a swept scan and can effectively

reduce the velocity and angle estimation errors.

The main contributions of the thesis include development of a theoretical
framework for ultrasonic flow analysis using a k-space approach. Based on this
framework, effects of the swept scan on flow estimation were thoroughly investigated,
thus making quantitative flow analysis in ultrasonic small animal imaging more

feasible.
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Chapter 1 Introduction

1.1 Doppler Ultrasound

Medical ultrasound systems have been well developed in assessing blood flow
velocities. They can provide non-invasive detection of blood flow and display the
velocity information in real-time. Typically, velocity estimation using ultrasound is
mainly based on the Doppler principle, i.e., the received frequency from moving
objects is shifted with respect to the transmitted frequency. The transducer generates
an ultrasound beam that interacts with the moving objects (mainly red blood cells) in
a vessel, and the backscattered echoes experience a frequency shift that can be used to
detect the flow velocity. Generally, flow velocities in the human body are typically
below 10 m/s and much less than the sound velocity (~1500 m/s) [1]. In this case, the
frequency shift f, of the received signals relative to the center frequency f. of the

excitation is approximately (see Fig. 1.1) [1]

2u; cos O

Jo=tfi———, (1.1)

(4

where u,; denotes the object velocity, ¢ is the sound velocity, and & is the angle

between the beam and the flow direction (known as the Doppler angle). By
transmitting a continuous wave (called CW Doppler), flow velocities parallel to the
beam direction can be obtained by estimating the frequency shift of the received

signals indicated in (1.1).

Flow velocity

I :‘-poppler angle
Flow direction i
Beam 'diréction

Fig. 1.1. Representation of a vessel intersected with the transmit beam.



The main limitation of CW Doppler is that it provides no range information.
Alternatively, PW (pulsed wave) Doppler with which a group of short sinusoidal
bursts is transmitted along a specific scan direction allows velocity estimation at a
specific sample volume. Fig. 1.2 illustrates flow estimation in the PW Doppler mode.
The received signals can be represented as a 2-D data set, with one axis representing
the pulse firing index (called the slow-time axis) and the other axis being the time of
flight (called the fast-time axis). The sampling interval in the slow-time axis is
determined by the pulse repetition interval (PRI). The received data within a particular
range gate are extracted and analyzed to measure the velocity parameters. Instead of

estimating the frequency shift along the fast-time axis, the time difference due to the

target motion between two consecutive received signals, given by 2u,PRIcosé / c

[2], is detected. Such a time difference leads to a frequency shift equal to (1.1) in the
corresponding frequency domain of the slow-time axis (i.e., the Doppler frequency
domain). The resulting spectrum (referred to as the Doppler spectrum) at a specific
range gate can be estimated by using the Fourier transform and then displayed as a
function of time (called Spectral Doppler). To provide real-time visualization of
velocity information on the image plane, the related velocity parameters, such as the
mean Doppler frequency and Doppler spectral energy, are spatially encoded in colors
and superimposed on the B-mode imaging (called Color and Power Doppler,
respectively). Fig. 1.2(b) provides the typical signal processing required for flow
velocity estimation in PW Doppler, where the wall filter is operated in the slow-time
axis and used to remove the signals from stationary tissues or slowly moving vessel

walls.

In order to allow real-time display, the flow velocity in Color Doppler is
typically estimated using 4—16 firings, which is much less than 64—128 pulses used in
Spectral Doppler [2]. In this case, alternative efficient techniques rather than
Fourier-transform-based methods are often adopted to provide reliable mean velocity
estimation with a limited number of firings [3]-[6]. Note that these techniques mainly
measure the axial velocity component (i.e., parallel to the beam direction). They can
basically be classified as the phase- and time-shift estimation methods, and are
described as follows.

1.1.1 Phase-shift Estimation Techniques

The phase shift caused by the target motion between two received signals can be
detected by performing the autocorrelation between the flow samples along the

slow-time axis [3]. Mathematically, the mean Doppler frequency (and thus the mean
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Fig. 1.2. Description of velocity estimation in the pulsed-wave Doppler mode. (a) The received echoes
from repeated firings are represented as a 2-D data set. The time or phase shift between consecutive
waveforms due to the flow motion is detected to obtain the flow velocity. (b) Block diagram for the
primary signal processing at the receiver. (The image is from the website:

http://www.gehealthcare.com/usen/ultrasound/).

axial velocity) is related to the autocorrelation function R(7) of the flow signals by

__J R(0) _¢(0) _@(PRI)

S =0 RO 22 2Rl

(1.2)

b

where ¢(7) is the phase of R(r) and ‘"’ represents the first-order temporal

derivative [3]. The above equation indicates the mean Doppler frequency can be
estimated directly by evaluating the phase of R(r) at the first lag. The
autocorrelation technique indicated in (1.2) is known as the 1-D autocorrelator
because the received signals within the range gate along the fast-time axis are

summed and reduced to one sample per firing. A 2-D autocorrelation technique



proposed by Loupas et al. [4], on the other hand, performs the two-dimensional
autocorrelation on the slow- and fast-time plane. The primary difference between
them is in the estimation of the RF frequency (i.e., the corresponding frequency
domain of the fast-time). Different from the 1-D autocorrelator that is evaluated at the
center RF frequency, the 2-D autocorrelator estimates the mean RF frequency.
Compared to the 1-D autocorrelator, the 2-D autocorrelator is capable of accounting

for the spectral variation resulting from attenuation or multiple scattering [4].

The common problem for the phase-shift techniques is that the spectral aliasing
limits the maximum detectable axial velocity. The maximum detectable axial velocity

is given by [1]

A

obj(axial) max = M 2 (1 3)

u

which can be increased by decreasing the PRI, where A is the wavelength. On the
other hand, a decrease in the PRI degrades the velocity resolution and limits the
maximum penetration depth. Despite such limitations, phase-shift estimation
techniques are computationally efficient and commonly employed in current

commercial ultrasound systems.

1.1.2 Time-shift Estimation Techniques

Time-shift techniques directly measure the time difference between successive
received signals at a range gate. This can be accomplished by employing
cross-correlation methods [1], the matched filter method (known as the wideband
maximum likelihood estimation) [5], or the efficient trajectory search techniques
across the whole received data set (known as the butterfly search) [6]. The main
benefit of time-shift techniques is aliasing immunity. In addition, these techniques, as
well as the 2-D autocorrelator, can be regarded as a wideband approach compared to
the 1-D autocorrelator in which the phase shift is estimated with respect to the center
frequency. The bandwidth of the transmit pulse is therefore allowed to be as wide as

that used in the B-mode imaging.

1.2 High-frequency Flow Estimation

Current commercial ultrasound systems mainly operate at a frequency ranging

from 2 to 10 MHz. The corresponding spatial resolution is about 0.3—1.5 mm and the
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detectable velocity is on the order of cm/s. At such frequencies, quantitative velocity
estimation is only achievable for large arteries and veins in the human body. For small
vessels (< 0.1 mm in diameter) with slow flows (< 10 mm/s) or closely spaced vessels,
the performance of velocity estimation is limited. In this case, only qualitative

visualization of flow patterns can be provided by using Power Doppler.

Increasing the operating frequency to above 20 MHz (referred to as
high-frequency ultrasound) provides an opportunity to quantitatively evaluate slow
flows within a small vessel [7]-[22]. This is because both spatial and velocity
resolutions can be simultaneously improved at higher frequencies [1]. Furthermore,
another advantage of high-frequency ultrasound is that, as the frequency increases, the
intensity of backscattered signals from red blood cells increases more than that from
tissues [7], which leads to an improvement in the signal-to-clutter ratio. With these
properties, high-frequency ultrasound allows flow measurements at the arteriolar and
capillary level [12]-[16], and enables the study of vascular hemodynamics and

morphology in the microcirculation [7].
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Fig. 1.3. High-frequency ultrasonic mouse imaging. (a) Spectral Doppler of aorta in an adult mouse

(From the website: http://www.visualsonics.conv/). (b) 40-MHz color Doppler (left) and power Doppler

(right) images of a mouse tumor (From Li. ef al. [20]).



Clinical applications of high-frequency ultrasound include imaging and flow
assessment of the eye [10]-[14] and skin [7]. In vivo measurements of the ciliary body
circulation in the human iris has been demonstrated using 40-MHz CW Doppler [12].
The vasculature of the rabbit eye using Color Doppler was also investigated by Kruse
et al. [14]. The ability of measuring small vessels allows the evaluation of eye
diseases such as glaucoma and anterior segment tumors, and skin cancers such as
malignant melanoma [7]. High-frequency ultrasound is potentially capable of
investigating tumor angiogenesis [7], quantifying blood flow over tumor areas

[15]-[20], and producing 3-D microcirculation flow maps [16].

In addition, high-frequency ultrasound is well suited for small animal imaging
[19]-[22]. Small animals, such as mice, have similar physiological structures and
gene composition to humans, and hence have been used to develop various disease
models [20][21][23]. High-frequency ultrasonic mouse imaging systems have recently
become commercially available (VisualSonics™ Vevo Series, Toronto, Ontario,
Canada). High-frequency ultrasound has shown its capabilities in flow measurements
of mouse embryos [19], which can provide valuable information for developmental
biology. The investigations of adult mouse vascular and cardiac systems [21] and
tumor microcirculation [20] allow longitudinal studies of disease evolution and
development of new drug and treatment strategies (see Fig. 1.3) [7]. Furthermore,
high-frequency ultrasound has been used for the guided injection of genetic material
to specific sites in mouse organs as well as developing mouse embryos [24]. With the
aid of contrast agents, high-frequency ultrasound was also shown to be able to detect
blood perfusion and quantify flow rate in the capillary body of the rabbit eye [25].
The incorporation of contrast agents with high-frequency ultrasound enables the
development of novel flow estimation techniques [25] and offers opportunities for

drug delivery [26].
1.2.1 Mechanical Scanning Techniques

Because high-frequency arrays are not commercially available, high-frequency
ultrasound systems involve mechanically scanning a single-element transducer [10].
Therefore, unlike array systems with electronic scanning, the frame rate in
high-frequency ultrasound is greatly dependent on the scan speed of the transducer.
The initial mechanical scanning technique, called the step scan or discrete scan [10],
translates the transducer to a series of discrete positions, as illustrated in Fig. 1.4. The
spacing between adjacent positions is typically on the order of a fraction of the
excitation wavelength [10]. In flow velocity estimation using pulsed waves, several

transmissions repeatedly interrogate the same region of interest at each scan position.
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Because the transducer needs to be stopped and re-started during data acquisition, the
step-scan technique is time consuming and makes it difficult to implement real-time

color flow imaging [14].

Step-scan Swept-scan

I

Fig. 1.4. Diagrams for two main mechanical scanning schemes: step scan (left) and swept scan (right).
In the step-scan technique, the transducer is translated to a series of discrete positions. At each scan
position, repeated firings are used to interrogate the same sample volume. In the swept-scan technique,
the transducer is moved continuously while transmitting and receiving. The sample volume for each

transmission event is not the same but overlapped closely:

To speed up data acquisition and improve the frame rate, an alternative technique,
called the swept scan or continuous scan, was proposed [14]. In the swept-scan
technique, the transducer is translated continuously while pulse-echo data are being
acquired. The spacing between adjacent scan lines is determined by the transducer
speed and the PRI. Unlike the step-scan method, flow velocities in a swept scan are
directly evaluated by extracting data from overlapping but different sample volumes.
In this case, to maintain sufficient correlation between successive scan data, the scan

line interval is typically much less than that in a step scan [14].

Ideally, compared to the step scan, the frame rate improvement from the swept
scan is approximately by a factor of N,Ax/As, where N, and As are the number

of firings and the scan line interval in a step scan, respectively, and Ax denotes the
scan line interval in a swept scan. Given As=4/2 , Ax=41/18~1/9 and
N,=4~16 (for Color Doppler), the frame rate for the swept scan is maximally
nearly four times faster than that for the step scan. In practice, when considering the
motor speed control in a step scan (i.e., acceleration and deceleration stages between
neighboring scan lines), the frame rate improvement for the swept scan is larger than

the aforementioned value [14].



Another potential advantage of the swept-scan method is in the use of a wall
filter [14], [27]. The wall filter is used to remove clutter signals from stationary or
slow-moving surrounding tissues and retain flow signals. Generally, the
infinite-impulse-response (IIR) filter is of interest because only a few filter orders can
achieve the narrow transition band [28], [29]. However, IIR filters exhibit the
transient response such that the first few flow data are often discarded. This has a
significant effect in a step scan because only 4-16 flow data are available. Applying
initialization techniques to IIR filters can reduce the transient response but at the
expense of yielding a wide transition band [29]. In contrast, because the flow data in a
swept scan are continuously sampled in the transducer scanning direction, the IIR
filter can be applied over the whole frame and thus the transient response is only

present at the beginning of the image [14].

1.2.2 Difficulties in High-frequency Flow Estimation

Although high-frequency ultrasound is attractive for its better spatial and
velocity resolutions, many difficulties and limitations in high-frequency flow velocity
estimation exist. One of the primary disadvantages is the limited penetration depth
resulting from frequency dependent attenuation. Moreover, a single-element
transducer with a fixed focus is used. Both factors lead to an insufficient
signal-to-noise ratio (SNR) at the ranges away from the focus. Consequently,
high-frequency ultrasound is limited to investigate the vessels at superficial depths
(less than 20 mm) [7]. Robust flow estimation techniques are therefore particularly

needed for high-frequency flow estimation.

In addition, though the swept-scan technique allows near real-time flow
estimation, effects of continuously scanning the transducer on accuracy of velocity
estimation have not been studied comprehensively. Due to the translation of the
transducer, the flow data between neighboring scans decorrelate as a function of the
scanning position [14][16][30]. Such decorrelation degrades the performance of axial

velocity estimation using correlation techniques.

Another difficulty in high frequency flow measurement is that slow flow velocity
estimation is susceptible to the presence of clutters from surrounding tissues [16],
especially when a large sample volume is used to improve the SNR. The spectral
overlap between the flow and clutter signals might result in a large velocity estimate
bias even if a wall filter is applied. A straightforward method to overcome this
problem is to increase the PRI (see (1.3)). As a result, when the swept-scan technique

is adopted, the performance of velocity estimation is greatly dependent on the scan



speed. Therefore, the choice of an adequate scan speed becomes critical. The system

needs to be adjusted appropriately according to the velocity range of interest.

Finally, quantitative velocity estimation using Doppler principles in
high-frequency ultrasound requires knowledge of the flow direction. Conventional
Doppler-based techniques introduced in Section 1.1 can only measure the velocity
component parallel to the beam. The velocity component perpendicular to the beam
(i.e., the lateral direction) produces no frequency shift and thus cannot be detected. As
a result, a large bias of velocity estimation occurs when the beam-vessel angle is large.
To precisely estimate the velocity with Doppler-based methods, the angle needs to be
known. Current commercial ultrasound scanners allow operators to perform angle
correction manually. This is done by marking a line along the vessel to be investigated
from the B-mode image [2]. This technique works well only if the vessel is clearly
visible. For small vessels, however, the Doppler angle might be difficult to measure
simply from the B-mode image. Hence, an efficient 2-D velocity or angle estimation

method in high-frequency ultrasound is of particular demand.

1.3 Vector Velocity Estimation Methods

Quantitative flow velocity estimation is of clinical value. For example, the
volumetric flow rate, defined as the product of the vessel cross sectional area and the
flow velocity, is an important indicator for many circulatory diseases. For small
animal models, measuring the volumetric flow rate over time helps to study arterial,
venous, and microvascular thrombosis [21], [23]. Conventional Doppler-based
velocity estimation techniques are angle dependent and fail to obtain the complete
flow information. To overcome this problem, several techniques aiming at estimating
either the Doppler angle or the velocity vector have been intensively investigated in
low-frequency ultrasound [31]-[42]. These techniques mainly include multiple beam
methods [31], [32], spatial quadrature methods [33], [34], speckle tracking methods
[35]-[37], and spectral-broadening-based methods [38]-[42]. Details of these
methods are described below, and possibilities of their applications to high-frequency

ultrasound are examined.

1.3.1 Multiple Beam Methods

Multiple beam methods are still based on Doppler principles, but employ two or

more beams to measure additional velocity components projected on these beam



directions [31]. Fig. 1.5 depicts a typical multiple beam approach using two
transducers to estimate the Doppler angle. Two beams generated simultaneously by
two different transducers are properly oriented so that they are overlapped with each
other at the region of interest. The individual velocity component along the
corresponding beam is then measured. Since the angle between the two beams is
known, combining it with two velocity estimates by using the triangulation method
can yield the Doppler angle and the velocity vector. Extending the two-beam to
three-beam technique can obtain the three-dimensional velocity vector [32]. Note that
this method can also be realized with a single array that is divided into several

sub-apertures.

The main drawback of multiple beam methods is system complexity. Moreover,
to obtain accurate velocity vector estimation, the angles between beams are required

to be large enough, making this method difficult to implement in cardiac applications.

Transducer 1

Ej Transducer 2
0,4
:_: . .'/

Flow direction

Fig. 1.5. Multiple beam methods using two transducers.

1.3.2 Spatial Quadrature Methods

The spatial quadrature method was proposed separately by Anderson [33] and
Jensen [34]. The basic idea behind this method is to generate a modulation on the
radiation field along the lateral direction. In doing so, the lateral velocity component
can produce the frequency shift along this direction in a manner similar to the
conventional Doppler effect. Such a lateral modulation can be generated by
combining two appropriate apodization functions across the receive aperture. Hence, a
parallel receive processing is necessary. A simple way to produce a lateral modulation
is to let the spatial frequency response of the point spread function (PSF), or
equivalently, the effective aperture of the pulse-echo response, become single-sided

[33]. This leads to a decrease in the spatial resolution. Due to the apodization imposed
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on the receive aperture, it is not clear whether the SNR is an issue for this method.
Moreover, before performing the lateral velocity estimation, it is essential to align the
received signals according to the estimated axial velocity component. Consequently,

any misalignment may lead to the estimation error of the lateral velocity.

1.3.3 Speckle Tracking Methods

Speckle tracking methods are non-Doppler-based methods. They are capable of
detecting motion and displacement between two different images, and have therefore
been widely studied in many ultrasonic applications, such as strain estimation [43],
motion compensation for freehand 3-D imaging [44], and flow estimation [35]—[37].
Basically, speckle tracking methods track the speckle pattern produced by the
scatterers within a vessel over successive B-mode images using a pattern matching
algorithm, such as cross-correlation [35] and sum-absolute-difference [36]. Fig. 1.6
shows an illustration of the search process in a typical 2-D speckle tracking approach.
A kernel for velocity estimation is selected in a reference image (left panel), and then
tracked within a predefined search region to find the best match in the next image
(right panel). Clearly, the spatial resolution of velocity estimation is determined by the
kernel size, whereas the search region size determines the maximum detectable
velocity. Once the displacement between the kernel and the best match pattern is
identified, the velocity vector for this kernel can be calculated according to the time

interval between the reference and the search images.

Compared to other techniques, the primary disadvantage of speckle tracking
methods is computational complexity. In addition, decorrelation between two speckle
patterns degrades accuracy of velocity estimation, especially when the axial
component is large or the Doppler angle is small [36]. Therefore, rapid image
acquisition is required and the performance of this method applied in a
mechanical-scan system is limited. Note that compared to transducer arrays capable of
dynamic focusing, such decorrelation becomes more pronounced when a transducer
with a fixed focus is used. To speed up data acquisition and decrease speckle
decorrelation, Bohs et al. incorporated parallel receive beamforming into the original
speckle tracking [37]. This method, named ensemble tracking, allows smaller
translation between the speckle patterns at the expense of the velocity resolution.
Even though ensemble tracking is more computationally efficient, the requirement of
a transducer array capable of performing parallel beamforming limits its usage in

high-frequency ultrasound.
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Fig. 1.6. Illustration of the speckle tracking method for vector velocity estimation. A kernel in which the
velocity is estimated is selected from a reference image, and then compared with other regions within a

predefined search region in successive images using a pattern matching algorithm.

1.3.4 Spectral-broadening-based Methods

The velocity component perpendicular to the beam axis can be estimated using
the bandwidth of the Doppler spectrum. The relationship between them is described
by the transit-time spectral-broadening effect [38]. The transit time is defined as the
time it takes for a scatterer to travel across the sample volume [1]. As illustrated in Fig.
1.7, if the transit time of scatterers is determined by the sample volume width rather
than its axial length, then the time duration of the Doppler signal at the slow-time axis
is inversely proportional to the lateral velocity component of moving scatters. The
resulting Doppler bandwidth is therefore proportional to the lateral velocity
component [38]. | > '

ﬁ Transducer
L

Flow velocity

Sample volume width

(a)
w
(X: —_—
Uy, SING h oL Uy, SIN G
>
Slow-time axis Doppler frequency
(b) (©

Fig. 1.7. The spectral-broadening-based vector velocity estimator. (a) Illustration of a vessel intersected
with a beam by a angle of 6. (b) The received signal along the slow-time axis. (¢) The corresponding

Doppler spectrum with its bandwidth proportional to the lateral velocity component of moving targets.
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Because only a single-element transducer is required, this method is attractive for
high-frequency ultrasound. However, the success of this method relies on accuracy of
the bandwidth estimation. Moreover, to assure the Doppler bandwidth is determined
by the transit time, the observation time has to be longer than the transit time [40].
Therefore, a long data acquisition time is required, which makes this method
originally only suitable for non-real-time Doppler modes such as Spectral Doppler
[42]. The feasibility of this method in real-time applications was firstly investigated
by Li et al. [40]. They employed a correlation-based method with spatial and/or
temporal averaging schemes to reduce the data acquisition time. Without using any
averaging scheme, Yeh and Li further suggested an extrapolation method to efficiently
increase  the observation time [41]. Besides, the performance of
spectral-broadening-based methods is also affected by velocity gradients [41].
Velocity variations within the sample volume may broaden the spectrum and make the

bandwidth estimation incorrect.

While spectral-broadening-based methods are suitable for high-frequency
ultrasound in terms of system and computational complexity, applying them to a
swept-scan system 1is still problematic. In this case, the transducer movement also
affects the spectral bandwidth and, consequently, the accuracy of lateral velocity
estimation. Therefore, the relationship between the lateral velocity component and the

spectral bandwidth in swept scanning needs to be quantified.

1.4 A Brief Introduction to K-space

K-space is a spatial frequency domain description of an imaging system and the
targets [38]. Typically, the k-space representation of the imaging system is the 2-D
Fourier transform of the system’s PSF. A complete formula regarding the k-space
theory can be found in [45], which is originally derived based on the use of either a
linear array with electronic scanning or a single-element transducer with mechanical
step scanning. Here, we consider the case in a step scan. Let x-axis (the lateral
direction) and z-axis (the axial direction) denote the transducer translation direction
and the center scan line, respectively, as illustrated in Fig. 1.8(a). For a point target
located at a focal range of z¢ on the z-axis that is much larger than the aperture size,
Walker and Trahey showed that the corresponding k-space representation Psy(fs, f2) is
given by [45]
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where f, and f represent the lateral and axial spatial frequencies, respectively, c is the
sound velocity, G is a scaling factor related to the target reflectivity, Ar(x) and Ar(x)
denote the transmit and receive aperture functions, respectively, Bpg(f;) denotes the
pulse-echo frequency response (where f; is the temporal frequency and equal to cf./2),
and ‘=’ denotes the convolution with respect to f;. The exponential term results from
the linear phase change with increasing range. The transmit and receive aperture
functions are real for the target at the focus, but can be complex by additionally
imposing a phase curvature to account for the distance difference between the target
depth and the focus.
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Fig. 1.8. The PSF (middle) and its k-space representation (right) for a stationary object located at the

focus in a step scan (left). Both images are displayed over a 50-dB dynamic range.

(1.4) indicates that the k-space representation at a specific f. (referred to as the
lateral spatial spectrum) is simply the convolution of the transmit and receive aperture
functions being spatially scaled and reversed. In other words, the lateral spatial
spectrum is a scaled version of the effective aperture of the pulse-echo response. The
scaling factor between them (i.e., the aperture index x and f;) is related by x = —2z¢f./f..
Note that the k-space representation is non-separable in rectangular coordinates (f; , f2).
The PSF and the associated k-space representation of a stationary object in a step scan
are illustrated in Figs. 1.8(b) and (c), respectively. The spectrum along f. is centered at
+2/4. The lateral spatial spectrum, on the other hand, is centered at the origin.
Meanwhile, the bandwidth of the lateral spatial spectrum increases with increasing f..
This results from the fact that an increase in the temporal frequency causes a decrease

in the wavelength and consequently, an improvement in the lateral spatial resolution.

14



The k-space technique provides a comprehensive tool to analyze many ultrasonic
imaging applications, such as spatial/frequency compounding, synthetic aperture
techniques, and correlation-based phase aberration correction [45]. In addition,
k-space was also applied to the analysis of speckle decorrelation caused by velocity
gradients in flow estimation [46]. As will be presented in this thesis, k-space can also
be used to describe 2-D motion in a swept-scan system and offer a new perspective on

flow estimation.

1.5 Description of the Experimental Setup

We have previously developed a high-frequency digital ultrasound system for
experimental purposes [19]. The system operates at a frequency of 45 MHz and is
capable of displaying the B-mode, M-mode, color Doppler and power Doppler
imaging. Several advanced imaging techniques, including the synthetic aperture
focusing technique [47], [48], the generalized-coherent-factor-based adaptive
weighting technique [49], coded excitation schemes, and robust flow estimation
methods [5], [6], are employed to enhance its performance. Previous studies for small
animal models demonstrated its ‘ability in imaging mouse embryos [19], [47] and

detecting tumor microcirculation [20].

— Control PC Motor controller >
A
A/D Receiver «——F—<> X
—>
Z/
z
. | v
|| Arbitrary function [»| Power amplifier
generator

Transducer

Fig. 1.9. Block diagram of the experimental high-frequency ultrasound system.

The block diagram for the experimental high frequency ultrasound system in this
thesis is illustrated in Fig. 1.9. A single-crystal lithium niobate transducer (NIH
Resource Center for Medical Ultrasonic Transducer Technology, Penn State
University, University Park, PA) has a 45-MHz center frequency with a —6-dB

fractional bandwidth of 55%. It is focused at 12 mm and has a diameter of 6 mm (thus
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f-number = 2). By using a three-axis mechanical scanning system (CSIM, Taipei,
Taiwan), the position of the transducer can be controlled to a precision of 1 um.
During data acquisition, proper acceleration and deceleration stages were employed to
avoid the instability of the transducer movement. The transmitting signal was
designed by using an 8-bit, 200-Msamples/s arbitrary-function generator (Signatec
DAC200, Corona, CA), and then amplified by a power amplifier (Amplifier Research
25A250A, Souderton, PA) before transmission. The received RF signals were
enhanced by a pulser/receiver (Panametrics 5900, Waltham, MA) and then sampled
by an 8-bit, 200-MHz A/D converter (Signatec PDA500). The sampled data were

stored in PC and demodulated to baseband off-line for further processing.

1.6 Scope and Dissertation Organization

The swept-scan technique enables rapid data acquisition in high-frequency
ultrasound systems with a single-element transducer. Its effects on the accuracy of
velocity estimation are, however, not thoroughly investigated yet. The primary
purposes of this thesis are (i) to quantify the effects of both lateral and axial motions
in a swept-scan system, and (ii) to develop an efficient and robust vector velocity
technique in a swept-scan high-frequency ultrasound system. Specifically, a k-space
approach is employed to describe the 2-D motion. Based on this modeling technique,
an efficient vector velocity estimation algorithm is developed. We refer to this new

velocity estimation method as the k-space vector velocity estimator.

This thesis is organized as follows. In Chapter 2, the proposed k-space modeling
technique for 2-D motion in a swept scan is presented. The effects of swept scanning
on both Doppler-based axial velocity estimation methods (autocorrelation-based
methods) and spectral-broadening-based techniques are investigated theoretically and
experimentally. The spectral difference of the flow data between swept and step
scanning are also compared. Based on the k-space technique, limitations for velocity

estimation in a swept-scan system are also analyzed.

In Chapter 3, the proposed k-space vector velocity estimator is presented. The
required kernel size for the k-space vector velocity estimation is determined
analytically and confirmed by numerical simulations. Simulations and constant-flow
phantom experiments are used to demonstrate the efficacy of the k-space vector
velocity estimator. In Chapter 4, performance of the k-space vector velocity estimator

is evaluated experimentally using a flow phantom. In addition, in vivo measurements
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of the mouse tail vessels are conducted to further investigate its performance. The

experimental results are also discussed.

Chapter 5 discusses the applications of the proposed k-space estimator in coded
excitation systems and electronic-scanning array systems. Moreover, performance of
the k-space estimator is also compared to that of the conventional
spectral-broadening-based techniques in a step scan. This thesis concludes in Chapter
6 with description of future works.
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Chapter 2 Effects of Swept Scanning on

Velocity Estimation

In order to understand the effects of the swept-scan technique on flow velocity
estimation, this chapter employed a k-space approach based on the fact that in a swept
scan the PSF of a moving target is deformed compared to that of a stationary target.
Moreover, different motions result in different PSFs and their corresponding k-space
representations. Furthermore, it is shown that the main difference between swept and
step scanning is in the Doppler bandwidth, which increases linearly with the scanning

speed in a swept scan.

Based on the proposed k-space modeling, the effects of swept scanning on
conventional 1-D and 2-D autocorrelation-based axial velocity estimators [3], [4], as
well as the spectral-broadening-based velocity estimation method [40], are examined
and investigated experimentally using a 45-MHz transducer. The results indicate that
such effects must be corrected in order to obtain accurate estimation of flow

velocities.

X (lateral)

z (axial)
v

Fig. 2.1. Schematic diagram of the swept-scan technique.

2.1 Basic Principles

Fig. 2.1 provides a schematic diagram for the swept-scan technique and the

coordinates used throughout this chapter. The transducer translation direction is
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denoted as the x-axis and the z-axis is located at the center scan line. The transducer is
scanned continuously at a speed of us..n, and adjacent scan lines are separated by Ax =
Uscan PRI

Fig. 2.2. The geometrical relationship of transmission and reception in a swept scan. Note that d’/2zc is

the distance accounting for the constant phase difference between the transmit and the receive apertures.

2.1.1 K-space Representation in a Swept-scan: a Stationary Object

In (1.4), the k-space representation is derived based on the step scan and is not
valid for the swept scan. Consider a stationary object located at a focal range of z;

on the z-axis in a swept scan. As indicated in Fig. 2.2, the transducer has moved a
distance of d = 2zgu..p/c after the echoes from the object are acquired. In this case, the

receive aperture can be expressed as

(x—d)sina

()= A (r—d) 2
x)=A.(x—d)e “e
R B (2.1)

where sina = d/ze. Compared to the transmit aperture Ar(x), two phase terms are
presented in the receive aperture: (i) exp(—2nfid’/2zic) is a constant phase shift that
results from the transducer movement, and (ii) exp(—j2nf;(x-d)sina/c) is a linear phase
term as a function of x specifying the steering-angle difference between the transmit
and receive apertures. Incorporating (2.1) into (1.4) and recognizing that f; = ¢f./2 and x

= —2z¢f,/f., the k-space representation in a swept scan Psw(fs, f2) 1S
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Note that d = 0 is the result for the step scan. Considering the case where the transducer
aperture function is uniformly weighted (i.e., unapodized) with a width of a, (2.2)

becomes

_ /. S +df, /2Zf j2nfd

Fow ([, ) =G'(S )T *11 *
(o f2) = GLL) (fz/zfnum) ( S-/2foum )

e (2.3)

(/) - fi T,

where fyum = z¢/a represents the f-number and I1(e) denotes the rectangular function.
Let m = f./2foum and n = f./2z; (2.3) then yields

¢ +nd
m

)ej27z§dd§

P £ =G =2

0 , f<-m—nd or f =2m—nd 2.4)
=G'(f.) ﬁsm(ﬂ( fo+m4nd)d)e’™ ") ~m—nd < f, <-nd

idsin(ﬁ(—fx +m—nd)d)e’™ " —nd < f. <m-nd
T

—m— nd w2 —nd

Fig. 2.3. Comparison of the lateral spatial spectrum between swept scanning (top panel) and step
scanning (bottom panel) under the condition where a stationary target is at the focus and the transducer

aperture function is rectangular. m = f,/2f,um, n = f./2z¢, and fu, denotes the f-number.
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According to (2.4), Fig. 2.3 compares the lateral spatial spectrum between swept and
step scanning. It is shown that the lateral spatial spectrum in the swept scan is
symmetric with respect to f; = —nd = —uscayf-/c, With a zero-to-zero bandwidth of 2m. On
each side of the symmetry axis, the spectrum is sinusoidal with a period equal to 2/d. In
contrast, the lateral spatial spectrum in step scanning is an even, triangular function
with the same bandwidth of 2m. Accordingly, for a stationary object, swept scanning of

a transducer produces both a shift and an oscillation in the lateral spatial spectrum.

In most applications the transducer scan speed is within the range 1-100 mm/s,
depending on the flow velocity range of interest. In this case, fid <<z for f;
corresponding to the nonzero spectrum values, and hence (2.2) can be approximated as
(see Appendix A)

B (f, 12)

= %e-’WfBPE(— of.[2) e A (=22, f, ) f. —d]2) * A (= 2z, f,/ f. - d[2)]

z

(2.5)

Moreover, the lateral spectral shift (i.e., nd) caused by the swept scanning is at least four
orders of magnitude smaller than the lateral spectral bandwidth (i.e., 2m). Hence, (2.5)

can be further simplified to

%e‘-"“f*prE<— oD el A (S 2z )% A= 22,1 1)) (26)

P (fon f)=
With such an approximation, the k-space representation for the swept scan is simply
that for the step scan multiplied by a phase term exp(jnf.d). The two scan methods
exhibit identical spatial spectra (i.e., the magnitude of the k-space representation).
Therefore, if the scan speed is much less than the sound velocity, both (2.6) and the
bottom panel of Fig. 2.3 indicate two important properties regarding the lateral spatial
spectrum when the target is at the focus and the transmit and receive apertures are
identical and even functions: (i) the lateral spatial spectrum for a given f is an even
function of f;, and (ii) when each lateral spatial spectrum is normalized to its maximum,

its bandwidth is proportional to f./fuum.

2.1.2 K-space Representation in a Swept-scan: 2-D Motion

Now consider an object moving at a velocity of u,,; and with a Doppler angle of
6, as indicated in Fig. 2.1. Assume that the object arrives at the focal point on the
center scan line while the transducer is scanning this line. Fig. 2.4 shows the

simulation results of the contour maps for the PSFs (left panels) and the associated
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k-space representations (right panels) under different motion conditions. The velocity
vector was fixed at 30 mm/s except for Fig 2.4(d), where 10 mm/s was used. The
Field II ultrasound simulation program [50] was used with the simulation parameters
listed in Table 2.1. Fig 2.4(a) shows the results for a stationary object. The left panel
of Fig. 2.4(b) shows the PSF of the object moving axially away from the transducer (&
= 0°). It can be seen that its PSF deforms along the axial dimension relative to that of
a stationary object. In general, if the axial displacement is less than the depth of field,
the echoes of two successive scan lines are shifted axially, but weighted with different

sound intensities. Such a shift is equal to the product of the axial velocity and the PRI.

Table 2.1. Simulation parameters used in the thesis

Simulation parameter Value
Sound velocity (c) 1.48 mm/us
Center frequency 40 MHz
Transducer fractional bandwidth 55%
Diameter of transducer (@) 6 mm
Focal length of transducer (zf) 12 mm
Transducer scan speed (#scan) 20 mm/s
Pulse repetition interval (PRI) 100 ps
Transmission pulse two-cycle sinusoid
Lateral sampling interval (Ax) 2 pm
Axial sampling interval (Az) 3.7 um

The left panels of Figs. 2.4(c) and (d) show the PSFs of an object moving
laterally in the opposite (6= —90°) and the same (€= 90°) directions of the scanning,
respectively. Compared to the PSF of a stationary object, the PSF in Fig. 2.4(c) is
compressed in the lateral dimension while that in Fig. 2.4(d) is expanded, which is
due to the relative lateral motion between the transducer and the object changing the
lateral width of the PSF. In both cases, however, the PSFs in the axial dimension
remain unchanged. For example, if the object and the transducer move with opposite
velocities, the lateral width of the resulting PSF is half that of a stationary object. On
the other hand, if the object moves synchronously with the transducer (i.e., the relative
lateral velocity is zero), the resulting PSF is constant along the lateral dimension (i.e.,
its lateral width is infinite). Accordingly, the lateral width of the PSF varies with the

relative lateral velocity over the transducer speed.
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Fig. 2.4. Contour maps for PSFs (left panels) and the k-space representations (in baseband form, right
panels) under different motion conditions with a vector velocity of 30 mm/s (except for (d), in which 10
mm/s was used). (a) Stationary object. (b) Axially moving object with = 0°. (c) Laterally moving target
with 8= -90°. (d) Laterally moving target with = 90°. (e) 2-D moving object with 4= -30°.
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Based on the above discussion, assuming the axial displacement is within the
depth of field, the PSF psw motion(X, z) for a 2-D moving object in a swept scan can be

expressed as

2.7)

pSmeotion(x’ Z) = Psw (|1 -

where V= ugi/tscan, and psw(x, z) represents the PSF of a stationary object in a swept
scan (i.c., the inverse Fourier transform of (2.6)). The use of the absolute value results
from the lateral symmetry of the sound field generated by the transducer: the PSF
scaled by 1—-sinfis identical to that scaled by vsind—1. As shown in (2.7), the axial
velocity component ugicosé causes an axial shift in the PSF, whereas the lateral
velocity component uqsiné broadens or narrows the PSF in the lateral dimension.
This is demonstrated in the left panel of Fig. 2.4(e) where the object moving with 6=
—-30°. By taking a 2-D Fourier transform of psw motion(¥, z), the corresponding k-space

representation Psw motion(fr, /=) 1 given by

-Jj2 B Sl z
PSmeotion (fx’fz) = J‘I pSWﬁmotion (x’Z)e y ’Ff."e \ ”fzdxdz

= ” Py (1= v xv cos Qe 27 e P dxdz
=j2x( fi+ f.vcos €)xe—j2ﬂj”;z’dxdzr (28)
_ 1 f.+ f,vecos @ )
|1—vsin0| 1—vsin9| e

where Psw(fs, f-) is as given in (2.6). The axial shift in the PSF leads to a shift in the
lateral spatial spectrum proportional to the axial velocity component and f.. For the
lateral motion, each lateral spatial spectrum is broadened by|1—1sind|. The right
panels of Fig. 2.4 demonstrate the k-space representations that (2.8) predicts. Based
on (2.8), Fig. 2.5 further schematically illustrates the k-space representation of a 2-D
moving object. Note that the center of each shifted lateral spatial spectrum is on the
line passing through the origin of the entire frequency plane, with a slope of
—1/vcosé.

Based on (2.6) and (2.8), the bandwidth bwy of the lateral spatial spectrum at a

given f. can be expressed as

f. sm 6’|

rel

bw (f.) =7 2.9)

num scan | Scan num
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where y is related to the aperture weighting function and the threshold used to
determine the bandwidth, and uw.l = Uscan — UobjSING represents the relative lateral
velocity between the transducer and the object. Based on (2.9), the lateral velocity

component can be obtained by estimating the bandwidth of each lateral spatial

spectrum.
f. AN
1 cfl-vsing)
Slope=—1/v cos‘di‘”“m 7

- A

.
*

Fig. 2.5. K-space representations for a stationary object (light) and an object moving at a Doppler angle

of @(heavy). vis the ratio of the object velocity to the scan speed.
2.1.3 Comparison Between Swept and Step Scanning

Unlike conventional step-scan flow estimations performed in the temporal or
temporal frequency domains [51], [52], the k-space motion modeling in swept
scanning described in (2.8) is presented in the spatial frequency domain. To
understand the impact of swept scanning on velocity estimation, it is necessary to
examine the fundamental difference in the flow echoes between the step- and
swept-scan methods. For this purpose, the spatial variables x and z are related to the

temporal variables by

x=u__7, and

scan

e (2.10)

zZ=—,

2

where 7 is the data acquisition time (i.e., the slow time) and ¢ is the fast time. Let fp
and f; denote the Doppler and RF frequencies corresponding to the slow and fast times,
respectively. Based on (2.10), the corresponding temporal frequency representation
Psw motion(fp, f7) of (2.8) is
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1), (2.11)

PSmeotion (fD H .ft ) = C'PSW (

scan

where C is a scaling factor. Due to the linear relationship between the spatial and
temporal (frequency) domains, Psw motion(fp, fi) 1S a scaled version of the
corresponding k-space representation Psw motion(fx, f=)- By applying (2.9) and (2.10), it
is readily shown that in (2.11), the Doppler bandwidth bw), (i.e., the bandwidth along
the Doppler frequency dimension) at a given RF frequency £, is given by

]Ft urel

. _ !
— Uy, SIN 49‘ =y —,

Cfnum

i
Cf num

bw,(f) =¥

(2.12)

u scan

where »” is a scaling factor related to the aperture weighting function and the
bandwidth threshold. In contrast to (2.9), here the Doppler bandwidth is directly

proportional to uyey.
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Fig. 2.6. Comparison of the temporal frequency representation for 2-D motion between (a) swept-scan

and (b) step-scan methods.

For the step-scan method, the corresponding temporal frequency representation
and the Doppler bandwidth can be regarded as a special case of the swept-scan
method in which un = 0. Fig. 2.6 compares the temporal spectra of the swept- and
step-scan methods, which reveals that the only difference is in the Doppler bandwidth.
The Doppler bandwidth in a step scan is proportional to the lateral velocity
component, which agrees with the results derived from the transit-time spectral
broadening effect [38]. In contrast, the Doppler bandwidth in a swept scan is
proportional to the relative lateral velocity between the transducer and the moving
object. Hence, when the lateral velocity component of the flow velocity is absent, no

Doppler spectral broadening occurs in step-scanned flow echoes (i.e., the temporal
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spectrum shown in Fig. 2.6(b) becomes a line segment), but an inherent Doppler
spectral broadening proportional to the scan speed exists in swept-scanned echoes.
Note that in this case, the bandwidth of the lateral spatial spectrum for the swept-scan
method is irrelevant to the scan speed (see (2.9)). Fig. 2.6 also indicates that the
step-scan method cannot discriminate the direction of the lateral velocity. Nonetheless,
two lateral motions with opposite directions in a swept scan result in distinct spectra

and hence are distinguishable.

2.2 Effects of Swept-scanning on Vector Velocity Estimation

The 1-D and 2-D autocorrelation-based axial velocity estimation techniques are
commonly used for color flow imaging because of their computational efficiency [3],
[4]. Conceptually, both estimators obtain the mean axial velocity by using an
estimation of the spectral mean frequency: the 1-D autocorrelator estimates the mean
Doppler frequency at the center RE frequency [3], and the 2-D autocorrelator
estimates the slope of the dotted line in Fig. 2.5 [4] (see Section 1.1.1). As a result,
velocity estimation errors increase for both estimators as the spectrum broadens [53].
Since the Doppler spectrum broadens linearly with the scan speed, the axial velocity
estimation using the autocorrelation technique is expected to be more erroneous in a
swept scan than in a step scan. Moreover, the estimation error is proportional to the
relative lateral velocity. The above observations are verified experimentally in Section
2.3.

In swept scanning, the transducer can also be moved back and forth during image
data acquisition. According to (2.8), the k-space spectral shift along the f;-axis in one
scan direction is the opposite of the shift in the other direction. Moreover, the lateral

spatial bandwidth also changes depending on the relative lateral velocity.

In the following, the mean frequency and the spectral bandwidth estimation in
the conventional vector velocity estimation method are further examined in a swept
scan in terms of the velocity resolution, aliasing, and the presence of clutter signals.
The analyses are based on the k-space modeling in (2.8), and the Doppler angle & is
restricted to within £90°. For the numerical examples presented below, we assume
that both transmit and receive apertures are rectangular (thus, y = 0.5 for half the
zero-to-zero bandwidth), and a —12-dB threshold is used to determine the lateral

spatial bandwidth (hence, y= 0.38). The other parameters are listed in Table 2.1.
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2.2.1 Velocity Resolution

According to (2.8) and (2.9), if the region of interest (or kernel) selected for the
flow estimation spans N scan lines, the axial velocity resolution and the lateral velocity

resolution will be

1 uSCaH
Auobj(axial) = = ,
f zN LP RI f;Wx

fnum fnum uSCan
Auobj(lat) = = )
Y.N.PRL  y fW,

and
(2.13)

respectively, where W, = N Ax denotes the lateral kernel width. Note that yis related to
both the bandwidth threshold and the aperture weighting function. A scaling factor of
Jfoum/ Y €Xists between the axial and lateral velocity resolutions and, in general, fyum>7;
for example, ¥< 0.5 if the transmit and receive apertures are rectangular. In contrast, the
f-number is typically greater than unity. Therefore, the lateral velocity resolution is

worse than the axial velocity resolution by a factor of fu,m/7. If the lateral kernel width is

84, the axial and lateral velocity resolutions at the central axial spatial frequency (i.e., f-
= 2/A, where A is the wavelength) are 1.25 and 6.58 mm/s, respectively.

As also indicated in (2.13), given a lateral kernel size, both the axial and lateral
velocity resolutions can be improved simultaneously by decreasing the scan speed
(either decreasing Ax or increasing the PRI). This indicates that the velocity resolution
is improved at the expense of the frame rate. The lateral velocity resolution can also be
improved by reducing the f-number. However, since the bandwidth of the lateral spatial
spectrum is inversely proportional to the f-number (see (2.9)), decreasing the f-number
increases the variance in the estimated lateral velocity. Therefore, a trade-off exists

between the resolution and the variance in the estimated lateral velocity.

2.2.2 Spectral Aliasing

Spectral aliasing limits the maximum detectable velocity in Doppler-based
estimations [1]. This aliasing occurs if the maximum lateral spatial frequency exceeds

half the sampling rate along the lateral dimension; i.e.,

Uy, COS O f. . UgySin 0 o1
u fnum uscan ZA'X

scan

(2.14)

We focus our discussion on the center axial spatial frequency. Note that the aliasing

worsens at higher axial spatial frequencies. To avoid aliasing, the velocity has to satisfy
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u()b' S ﬂ'/4PRI B wscaﬂ /fnum . (2.15)
' cos@—ysinb/f,,.

It can be readily seen that if fnum2 >> 7 (which is valid in our case), to assure that

aliasing is absent at all Doppler angles, the maximum detectable velocity obj(max) 18

A

_ /4
uobj(max) - 4PRI o f_ Usean (2 1 6)

which 1S Jscan/foum less than that for step scanning indicated in (1.3). The maximum
detectable velocity increases as the PRI or Ax decreases. Thus, increasing the scan
speed does not necessarily increase the maximum detectable velocity. The effects of the
scan speed on the maximum detectable velocity are shown in Fig. 2.7, in which each
solid line depicts the variation in the maximum detectable velocity as a function of the
PRI, and each dashed line indicates the variation as a function of Ax. Note that the solid
line marked as ‘Ax = 0 um’ is the maximum detectable velocity in step scanning. The
figure shows that for a constant scan speed, different combinations of Ax and the PRI
give rise to different maximum detectable velocities. The maximum detectable velocity
can be improved more by decreasing the PRI than by decreasing Ax. For a given PRI, if
Ax << A, the second term on the right-hand side of (2.16) is much less than the first term,
and the maximum dectable velocity in a swept scan is close to that in a step scan. As
indicated in Fig. 2.7, if Ax =2 pm and PRI =100 ps (i.e., a scan speed of 20 mm/s), the
maximum detectable velocity is 88.7 mm/s in a swept scan compared to 92.5 mm/s in a

step scan.

Even when spectral aliasing occurs, the velocity can still be estimated correctly by
utilizing the 2-D characteristics of the spectrum. One technique to overcome the
aliasing is based on the fact that for the aliasing spectrum, the line passing through the
center of each lateral spatial spectrum does not pass through the origin of the spatial
frequency plane [51]. The velocity estimate can be corrected by detecting such a

condition.

In addition, with the swept-scan technique, an aliasing uniquely exists in
spectral-broadening-based lateral velocity estimation. As indicated in (2.7) and (2.9), a
lateral velocity of uscan (1+5), where s > 0, cannot be discriminated from that of uscan
(1-s). The scan speed, therefore, affects the detectable range of lateral velocities in the
scanning direction. Increasing the scan speed enlarges the detectable lateral velocity
range in the scanning direction, but it also increases the variance in the estimated lateral

velocity.
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Fig. 2.7. Effects of the scan speed on the maximum detectable velocity. The solid and dashed lines

indicate the maximum detectable velocity as functions of the PRI and Ax, respectively.

2.2.3 The Presence of Clutter Signals

In addition to flow signals, the selected kernel may contain clutter signals from
surrounding tissues or the vessel walls. Such clutter signals appear in the vicinity of
the zero lateral spatial frequency axis and their spectra may overlap those of the flow
signals, which may degrade the accuracy of the velocity estimation. This spectral
overlapping is more pronounced in swept scanning than in step scanning because the
spectra of both the flow and the clutter signals are broadened in a swept scan [16].
The common method to remove clutter signals is to employ a high-pass filter.
Nonetheless, if the spectrum overlapping is severe, the wall filter also removes the
slow-velocity components of the flow; hence the presence of clutter signals limits the

minimum detectable velocity.

In the following analyses, the intensity ratio of the clutter signals to the flow
signals is set to unity to simplify the expressions. To avoid spectral overlapping, the
spectral shift for the flow in the lateral spatial frequency dimension must be larger

than the sum of the lateral spatial bandwidths of the clutter and flow signals; i.e.,

u, cosd u, sin@
LAy AN A L) (2.17)
uscan fnum fnum uscan
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For convenience, the sign in the bracket is changed to a plus. Hence, & defined in

figure 1 becomes —6. Rewriting (2.17) yields

u()bj Z 2 uscan 1. .
fnum cose - 7/S1n H/fnum

(2.18)

Note that (2.18) is independent of the axial spatial frequency. Considering the special
case in which only the axial velocity component is present (i.e., & = 0°), (2.18)

becomes

Uy > 2y;‘;ﬂ. (2.19)

Obviously, the minimum detectable velocity in this case is proportional to the
transducer speed and inversely proportional to the f-number [16]. For example, for

Jfroum = 2 and Usean = 20 mm/s, the minimum detectable velocity is 7.6 mm/s.

Moreover, (2.18) can be rewritten as

0<0 =¢-sin’ (2”‘— cos ¢], (2.20)

obj

where ¢ = tan' (foum/%. The above equation states that given a scan speed and a
velocity, the Doppler angle & must be smaller than the critical angle 8. (i.e., -90°<8
<6O.) to avoid the spectra of the clutter and flow signals overlapping. In other words,
the critical angle represents the maximum detectable angle in the presence of clutter
signals. Based on (2.20), Fig. 2.8 shows the critical angles as a function of velocity for
different scan speeds, from which the following observations can be made. First, the
spectral overlapping is absent in the region below each curve, and the velocity
corresponding to €, = 0° is the minimum detectable velocity predicted by (2.19).
Second, for each curve, the critical angle increases and saturates to its maximum as
the velocity increases. Because the second term on the right-hand side of (2.20) is
greater than zero, the critical angle has an upper bound equal to ¢, which represents
the maximum detectable angle in a step scan. In the case of Fig. 2.8, the upper bound
of the critical angle is around 80°. The third observation is that both the critical angle
and the minimum detectable velocity can be increased simultaneously by reducing the
scan speed. Finally, Fig. 2.8 provides a guideline for the choice of scan speed
according to the velocity range of interest. For example, for measuring flow velocities

around 5 mm/s, the scan speed should be below 5 mm/s to allow assessment over a
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Fig. 2.8. Critical angles as a function of the vector velocity in-the presence of clutter signals. Different

curves represent different scan speeds.

2.3 Experimental Investigations

Experiments involving speckle phantoms were conducted to investigate Doppler
spectral broadening caused by swept scanning and its effect on conventional
autocorrelation-based axial velocity estimators. All experiments employed the
transmission of three cycles of a 40-MHz sinusoid. The scan speed was varied by
changing Ax with a fixed PRI of 100 ps.

2.3.1 Doppler Spectral Broadening for a Stationary Phantom

The proportionality between the Doppler bandwidth and the relative lateral
velocity uy, as indicated in (2.12), was verified experimentally. A gelatin phantom
containing graphite powder with uniform distribution was placed in a water tank.
The transducer was scanned continuously and laterally to obtain the 2-D scan data set.
A kernel around the focus was extracted from the 2-D scan data set, and was then

multiplied by a 2-D Hanning window prior to 2-D Fourier transformation. The spatial
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and are the best linear fits of the estimates with a 16Ax20/ kernel.
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spectrum obtained was represented as the corresponding temporal spectrum using
(2.11). The dependence of the —12-dB Doppler bandwidth on the scan speed, using
different kernel sizes, is shown by the solid lines in Fig. 2.9. Figs. 2.9(a)—(c) show the
results with kernel sizes (lateral by axial) of 164x204, 84x104, and 44x84, respectively.
The dotted lines are identical and represent the best linear fit of the estimates using a
kernel size of 164x204. For all the panels, only the Doppler spectrum at the center RF
frequency was used to estimate the bandwidth. Thirty independent experiments were
performed under each condition to obtain the mean and standard deviation (indicated
by error bars). With a 164x204 kernel, the Doppler bandwidth is proportional to the
scan speed (note that u, is equal to the scan speed in this study); for an 81x104 kernel,
such proportionality approximately holds when the scan speed is above 25 mm/s;
however, when the scan speed is lower than 25 mm/s, the Doppler bandwidth is
overestimated compared to the proportionality line, and this becomes significant for a
4Ax84 kernel. This can be explained by (2.7): as the scan speed decreases, the PSF
broadens until its lateral width is larger than the lateral kernel width. In this case, the
Doppler bandwidth is dominated by the kernel size. Furthermore, Fig. 2.9 also
indicates that the variance of the Doppler bandwidth estimation increases with the

scan speed.

2.3.2 Performance of Autocorrelation-based Axial Velocity
Estimators

The accuracy of the 1-D and 2-D autocorrelation-based axial velocity estimators
under different scan speeds was investigated. The axial motion of the phantom was
emulated by moving the transducer axially; hence, the transducer in this experiment
was moved in two dimensions. A kernel around the focus with a size of 44x81 was
used to estimate the velocity. Effects of different scan speeds for axial velocity
estimations of 0 and 10 mm/s are shown in Fig. 2.10(a), where the dashed and solid
lines correspond to the 1-D and the 2-D autocorrelators, respectively. As a
performance index, Fig. 2.10(b) shows the corresponding standard deviation estimate
of the Doppler spectrum for the axial velocities of 0 mm/s (solid line) and 10 mm/s
(dashed line). The dotted line in Fig. 2.10(b) represents the linear fit of the estimated
standard deviation when a larger kernel (164x204) is used. In both figures, 30
realizations were used to obtain the statistical results. It can be seen that the velocity
estimation errors for both 1-D and 2-D autocorrelators generally increase with the
transducer scan speed. Due to the limited observation window, the proportionality
between the estimate variance and the scan speed does not hold strictly, as explained

earlier. In general, the 2-D autocorrelator outperforms the 1-D autocorrelator in terms
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of the estimate variance. Besides, although the Doppler bandwidth is irrelevant to the
axial velocity component, the estimate variance for 10 mm/s is evidently greater than
that for 0 mm/s when the scan speed is below 15 mm/s. This is mainly attributable to
the depth of field of the transducer used here not being large enough (the depth of

field is 2fjum4 = 81 in this case) and lacking uniformity, resulting in spectral

fluctuation.
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Fig. 2.10. (a) Effects of the scan speed on the 1-D (dashed lines) and 2-D (solid lines)
autocorrelation-based axial velocity estimators. Axial velocities of 0 and 10 mm/s were investigated. (b)
The corresponding standard deviation estimate of the Doppler spectrum as a function of the scan speed
for axial velocities of 0 mm/s (dashed line) and 10 mm/s (solid line). The dotted line in (b) is the best
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2.4 Concluding Remarks

This chapter investigated how continuously scanning the transducer affected the
estimation of flow velocity in high-frequency ultrasound. Specifically, a k-space
approach was employed to analyze 2-D motion with an arbitrary Doppler angle.
Based on this k-space motion modeling, the temporal spectral contents of the swept-
and step-scan methods were compared. The experimental results demonstrated that
with the swept-scan technique, the Doppler bandwidth is approximately proportional
to the relative lateral velocity between the transducer and the moving object when the
kernel is large. Therefore, conventional lateral velocity estimation based on the
proportionality between the Doppler bandwidth and the lateral velocity must be
corrected. For instance, if the scan speed is 20 mm/s and a target moves laterally at
10 mm/s in the direction opposite to the scanning, the lateral velocity estimate for this

target without considering the swept-scan effect is 30 mm/s.

We also examined the performance of the vector velocity estimation method (i.e.,
Doppler-based axial velocity estimator plus spectral-broadening-based lateral velocity
estimator) in swept scanning. The results indicated that the performance indices
related to flow velocity estimation, such as velocity resolution, estimate variance, and
maximum/minimum detectable velocity, are compromised under different system
settings. We summarize these results as follows. Increasing the scan speed improves
the frame rate and the maximum detectable lateral velocity in the scanning direction;
however, it limits the velocity resolution, the minimum detectable velocity, and the
maximum detectable angle. Decreasing the f-number improves the lateral velocity
resolution and the spatial resolution, but it increases the estimate variance and limits

the minimum detectable velocity and the maximum detectable angle.

The experimental results also showed that the accuracy of spectral bandwidth
estimation and the autocorrelation-based axial velocity estimators decreases as the
scan speed increases. Due to the limited kernel size, the Doppler bandwidth
estimation did not increase strictly proportionally with the relative lateral velocity.
Thus, a large kernel size is required for accurate velocity estimation. Finally, the
analyses performed did not consider flow velocity gradients, which may broaden the
spectrum and degrade the performance of the spectral-broadening-based lateral
velocity estimator [40], [41]. To address these problems, an efficient velocity
estimator to reduce the estimation errors caused by the use of swept scanning and the

presence of velocity gradients will be presented in Chapter 3.
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Chapter 3 K-space Vector Velocity Estimator

In Swept-scan

The conventional Doppler-based velocity estimation method limits its ability to
detect the axial velocity component. Several techniques to quantify the non-axial
velocity component are proposed, as mentioned in Section 1.4. Among them, the
spectral-broadening-based velocity estimation method is particularly suited to a
single-element transducer swept-scan system. However, as shown in Chapter 2, this
technique includes a velocity bias proportional to the scan speed if the swept-scan
effect is ignored. Furthermore, the spectral bandwidth increases with the scan speed,
which makes the lateral velocity estimation with this technique in a swept scan more

erroneous than in a step scan.

In order to correct the velocity estimation bias and reduce the estimation variance
caused by the swept scan, an efficient vector velocity estimator is proposed based on
the k-space approach described in Chapter 2. In the proposed method (referred to as
the k-space vector velocity estimator), several vector velocity estimates corresponding
to different axial spatial frequencies are averaged. Both simulations and constant flow
phantom experiments were performed to demonstrate the validity of the proposed

vector velocity estimator.

3.1 Theory

The k-space modeling technique described in (2.8) indicates that the lateral
spatial spectral shift and bandwidth are related to the axial and lateral velocities,
respectively. Therefore, the velocity vector can be obtained by combining the
estimates from the mean frequency and the bandwidth of each lateral spatial spectrum.
Accordingly, a procedure for estimating the velocity vector is proposed below. First, a
kernel in an image is selected, which is then windowed (e.g., using a Hanning
function) prior to 2-D Fourier transformation. Both the mean frequency and the
bandwidth are estimated for each lateral spatial spectrum. To reduce the estimation
error, the velocity estimate for each lateral spatial spectrum is further averaged across
different axial spatial frequencies.
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The mean frequency Z of a lateral spatial spectrum at a specific f, is

calculated by
x |7 SW x°>Jz
AL iz 3.1
where |P’ S ? is the 2-D power spectral density of the selected kernel. Note

that the above equation is similar to the mean Doppler frequency estimation in

conventional autocorrelation-based axial velocity estimation [40]. According to (2.8),

cos @) is obtained by combining a total of

the averaged axial velocity estimate (u;

M estimates corresponding to M different axial spatial frequencies (), i.e.,

Uy, COSO = —— ij(lfz’) i (3.2)

The bandwidth of the lateral spatial spectrum bw, (f.) in (2.9) is defined as the
difference between f (f.) and the maximum lateral spatial frequency. The main

advantage of this definition over other criteria, such as the standard deviation, is that
estimating the maximum frequency is relatively insensitive to velocity gradients [54].

Another potential advantage is that the maximum frequency estimation is less affected

by the wall filter used. Thus, the averaged lateral velocity estimate (u,,; sin ) is given

by

M
liy SN0 = éz}[ /. numbwk (s )]., (33)

Note that the above equation is derived based on u,, >0 or wu,, >u,sin®. Since

scan

tu, yield the same lateral spatial bandwidth, aliasing occurs when the lateral

velocity component in the scanning direction is larger than the scan speed. That is, the
lateral velocities u, (1+s) in the scanning direction, where s>0, cannot be

scan

distinguished.
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The Doppler angle estimate 6 is readily found by combining (3.2) and (3.3),

1.e.,

A Uy, SING
0 = tan (J—) (34)

Uy COS O

Since the full 2-D spectrum is used, the k-space vector velocity estimator described
here can be viewed as a wideband technique, in contrast to conventional narrowband
methods such as the 1-D-autocorrelation-based [40] and the FFT-based vector velocity
estimators [41], [42] which use only the center RF frequency (or equivalently, the
center axial spatial frequency in our case). In the following sections, the conventional
narrowband velocity estimator is referred to as the 1-D velocity estimator to

distinguish it from the k-space velocity estimator.

3.2 Simulation Results

3.2.1 Kernel Size

Due to the finite observation window, the size of the kernel used to evaluate the
flow velocity affects the accuracy of the k-space velocity estimator, in particular the
bandwidth estimation more than the mean frequency estimation. In general, it is
desirable to use a kernel that is large enough to incorporate the entire PSF. Since the
PSF broadens with decreasing u,, the required lateral kernel size is thus determined
by the maximum detectable lateral velocity component in the scanning direction. On
the other hand, the required axial kernel size is determined by the maximum
detectable axial velocity component. Based on the PSF described in (2.7), the required

kernel size is derived theoretically below. To avoid improper truncation, the lateral
kernel size should be greater than the —6-dB effective beamwidth w,; . That is,

(NL _ I)AX Z Weff — j’fnum — 2:f\l'lleLlSCal'l , (3'5)
‘l—uobj sinf /u u

scan rel

where N, is the number of scan lines in the kernel. Note that w, is equal to
Af,.. for a stationary object [1]; moreover, w,, increases as u, decreases. Once

N, s determined according to (3.5), the required axial kernel has to be larger than

the axial shift caused by the axial velocity component. We therefore have
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U_.Ccos H‘
ob
—Ax

]

(N -DAz= (N, - 1) , (3.6)
or equivalently,
—DAz  |u,, cosé
(Vy ~DAz , Fay ‘ (3.7)

(N, -DAx ~ u

scan

where Az denotes the sampling interval along the axial direction and N, 1is the

required number of axial sampling points. (3.7) indicates that the ratio of the axial to
lateral kernel sizes must be larger than the ratio of the axial velocity component to the
scan speed. The lateral and axial kernel sizes can be determined from (3.5) and (3.6),
respectively. For example, according to the parameters indicated in Table 2.1, in order
to detect a target velocity of 30 mm/s with & =30°, the required kernel size is at least
8\ (lateral)x10.4A (axial). In practice, the kernel should be slightly larger than the
predicted one due to the windowing function applied. Note that the above analysis of
the kernel size is similar to that of the aspect ratio associated with conventional

spectral-broadening-based vector velocity estimation methods [40].

The effects of kernel size on the lateral spatial bandwidth estimation were further
studied by simulating a moving target. Doppler angles ranging from —90° to 40° with
a step of 10° were investigated (see Fig. 2.1). A Hanning window was applied to the
kernel prior to 2-D Fourier transformation. Fig. 3.1 shows the effects of kernel size on
the —12-dB bandwidth for vector velocities of 30 mm/s (top panel) and 50 mm/s

(bottom panel), where only the lateral spatial spectrum at the center axial spatial
frequency was used for the bandwidth estimation. The horizontal axis is u . In this

case, no lateral velocity component is present when u,, =20mm/s. Ideally, the

rel *

lateral spatial bandwidth is proportional to u, (see (2.9)), and Fig. 3.1 shows that
the bandwidth is approximately proportional to u , as the kernel size increases. For

smaller u_, , however, such a relationship does not hold and the bandwidths become

rel »
overestimated. As mentioned earlier, this is because the PSF expands laterally and
hence becomes truncated. In this case, the bandwidth becomes dominated by the
lateral kernel size. Fig. 3.1 suggests that an 8Ax10A kernel is suitable for the vector

velocity estimation, and is adopted in the sections below.
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Fig. 3.1. Effects of kernel size on the —12-dB bandwidth for vector velocities of 30 mm/s (top panel) and

50 mm/s (bottom panel). The horizontal axis is ..

3.2.2 Constant Flows

To verify the proposed k-space velocity estimator, a speckle-generating object
moving at a constant velocity of 30 mm/s was simulated. Doppler angles from —90° to
40° with a step of 10° were investigated. The —12-dB threshold was used to determine
the lateral spatial bandwidth, and the scaling factor y in (3.3) was empirically set to
0.33. Eleven axial spatial frequencies (i.e., M =11) were used for averaging. Fig. 3.2
shows the estimated velocity components and Doppler angles using the k-space
velocity estimator (solid lines). Fig. 3.2(a) shows the estimated u_,, and Figs. 3.2(b)
and (c) show the estimated axial velocity components and Doppler angles,
respectively. As a comparison, the results for the 1-D velocity estimator are shown as
dashed lines. The dotted lines represent the actual values. Note that a positive axial

velocity represents movement away from the transducer. Also note that the axial
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velocity estimates for the Doppler angles within 0~40° are similar to those
within —40~0° and are not shown here for display convenience. In this figure, ten
independent realizations were generated to produce the mean and standard deviation

values.
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velocity estimators are compared. (a) Estimated u, . (b) Estimated axial velocity components. (c)
Estimated Doppler angles. The dotted lines are the actual values. The error bars represent + one standard

deviation relative to the mean.

Compared Fig. 3.2(a) to Fig. 3.2(b), the axial velocity estimates are more
accurate and robust than the lateral velocity estimates. The estimated lateral velocities
in the direction opposite to the scanning direction (i.e., u, >20mm/s) are in close
agreement with the actual ones. The lateral velocities in the scanning direction,
however, are overestimated due to the finite kernel size (as explained in Section 3.2.1).
However, a smaller u, narrows the lateral spatial spectrum and consequently

reduces the estimation variance, as evident in Fig. 3.2(a). Generally speaking, the
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estimates of lateral velocities in the direction opposite to the scanning direction and
the corresponding Doppler angles (i.e., # =—-90 ~ 0°) are in good agreement with the
actual values. Overall, the k-space estimator outperforms the 1-D estimator in terms of
both the estimation bias and the standard deviation, demonstrating that averaging

across axial spatial frequencies is effective in reducing the estimation error.
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Fig. 3.3. Laminar-flow simulation results, shown in the same format as Fig. 3.2.
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3.2.3 Spatial Velocity Gradients

The preceding simulations assumed constant flows within the selected kernel and
did not include spatial velocity gradients. In practice, the presence of velocity

gradients degrades the accuracy of the bandwidth estimation [40], [41]. To evaluate
such effects on the proposed k-space estimator, a laminar flow u(7) with a parabolic

profile was simulated using

2

u(ry=(1- %)umax, (3.8)

43



where R is the vessel radius, » is the radial distance relative to the vessel center,
and u_, 1is the maximum flow velocity. The vessel was surrounded by stationary

X

clutter, and the intensity ratio between the flow and clutter signals was set to unity.
Parameter values of R=031mm, u,_, =30mm/s, and 6 from —90° to 40° were

used. The kernel size was 8Ax10A, making its lateral size roughly equal to the vessel
radius when € =0°. Other simulation conditions were identical to those for the
constant flows. To minimize the effects of velocity gradients, the peak frequency was
estimated instead of the mean frequency [54]. The estimation results are shown in Fig.
3.3 using the same display format as in Fig. 3.2. The estimation errors are slightly
higher for laminar flows than for constant flows. Note that in Fig. 3.3(b), since the
kernel includes a large portion of the vessel, the axial velocities are underestimated
relative to their corresponding maximum axial velocities. The k-space estimator is still
better than the 1-D estimator, with the simulation results showing that applying the

k-space estimator is feasible in the presence of velocity gradients.

30r
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—— K-space
- | rue Profile
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Lateral (mm)
Fig. 3.4. Estimation of flow velocity profile using the k-space (thin solid line) estimator. The thick solid

line is the actual profile. The Doppler angle is —30° and the kernel size is 2Ax5\. The error bars represent

+ one standard deviation relative to the mean.

The use of a large kernel improves the lateral velocity estimation because it is
more susceptible to the observation window than the axial velocity estimation. If a
vessel is smaller than the required kernel, the precise flow profile cannot be obtained.
To account for this problem, a larger kernel is used firstly to determine the Doppler

angle, from which a smaller kernel can be used to estimate the axial velocity
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component and in turn, the velocity vector. This is demonstrated in Fig. 3.4, where a
laminar flow with @ = -30° was investigated using the k-space estimator (thin solid
line). A 2Ax5\ kernel was used to estimate the axial velocity component. Ten
realizations were generated. Since the kernel contains larger velocity gradients for
smaller velocities than those for larger velocities, so the estimated profile is slightly
broadened. Also note that the estimation variance is larger than that shown in Fig.
3.3(b) because a smaller kernel was used in this case. It is evident that this two-step

vector velocity estimation method allows accurate estimation of the velocity profile.

3.3 Experimental Results—Constant Flows

The principle of the k-space vector velocity estimator is derived assuming a
constant velocity. Thus, a constant-flow experiment was designed to meet this
requirement. To emulate a 2-D constant flow, a speckle phantom was placed in a
water tank and interrogated by a tilted, scanned transducer. Fig. 3.5 explains how
scanning a tilted transducer laterally is equivalent to moving a phantom in two
dimensions. When the transducer is moved from right to left with a tilt angle of v/,

the equivalent axial velocity component is u ., cosy toward the transducer, and the

scan

equivalent relative lateral velocity between the transducer and the phantom is
siny . In this way, 2-D constant flows were emulated by varying the scan speed

usoan

and the tilt angle. Note that the tilt angle of the transducer rather than the Doppler

angle was estimated.

Scanning
direction

Lateral velocity
component

Axial velocity
component

Fig. 3.5. The effect of scanning a tilted transducer.
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Scan speeds of 40 and 50 mm/s were investigated. For each scan speed, the
phantom data were collected at tilt angles from 0° to 60° in increments of 10°. An
8Ax10A kernel was selected around the focus. A —12-dB bandwidth threshold was
used, ¥ was set to 0.33, and 11 axial spatial frequencies were employed in the
k-space estimator. Figs. 3.6 and 3.7 show the estimation results when the transducer
was scanned at 40 and 50 mm/s, respectively. Each figure includes estimations of the
relative lateral velocities (Figs. 3.6(a) and 3.7(a)), the axial velocities (Figs. 3.6(b) and
3.7(b)), and the corresponding tilt angles (Figs. 3.6(c) and 3.7(c)). The solid and
dashed lines are the results for the k-space and 1-D estimators, respectively, and the
dotted lines are the actual values. Ten independent experiments were performed to
produce mean and standard deviation values. Consistent with the simulation results,

the axial velocity estimation is more accurate than the relative lateral velocity
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estimation. Furthermore, smaller relative lateral velocities are overestimated. The
estimation errors in the experimental results are, however, larger than those in the
simulations, especially for the 1-D estimator. This is because the presence of large
spectral fluctuations in the experimental data makes it difficult to estimate the
bandwidth correctly. This is partly attributable to the depth of field of the transducer
being too small and lacking uniformity. As a result, when only the axial velocity
component is present, the echoes of two adjacent scan lines are no longer the delayed
and scaled versions of each other, leading to additional spectral variation. Another
reason is that during data acquisition, the motor speed is not constant, which also
results in spectral fluctuation. Although the two above factors affect the accuracy of
the velocity estimation, the k-space estimator is still more robust and is more
consistent with the actual values than the 1-D estimator. Note that unlike the Doppler
angle estimation in the simulations, underestimation occurs at larger tilt angles where

the relative lateral velocities are overestimated.
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Fig. 3.7. Constant-flow experimental results obtained by scanning a tilted transducer at 50 mm/s, shown

in the same format as Fig. 3.6.
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Fig. 3.8. B-mode (panel (a)) and color Doppler images (panels (b)—(e)) of the constant flow phantom.
The actual axial and lateral velocities are 6.9 (toward the transducer) and 19.4 mm/s (in the opposite of
the scanning direction), respectively. Panel (b) shows the true velocity vector (20.6 mm/s). Panel (c)
corresponds to the conventional 1-D autocorrelator. Panel (d) corresponds to the 1-D estimator without

considering the swept-scan effect; panel (e) corresponds to the k-space estimator.
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The advantage of the k-space estimator is further demonstrated in Fig. 3.8, in
which color Doppler images (panels (b)—(e)) with different velocity estimation
methods were compared at a scan speed of 40 mm/s and a tilt angle of 10°. In this
case, the axial velocity was 6.9 mm/s toward the transducer, whereas the emulated
lateral velocity of the phantom was 19.4 mm/s assuming the transducer speed was 20
mm/s. This yields a velocity vector of 20.6 mm/s. Panel (a) shows the B-mode image.
Panel (b) shows the true velocity vector result. Panel (c) shows the result of the
conventional 1-D autocorrelation-based axial velocity estimation method [3]. Panel (d)
corresponds to the 1-D estimator without considering the swept-scan effect; panel (e)
corresponds to the k-space estimator. All color Doppler images were post-processed by
employing proper thresholding and the median filter. As shown in Fig. 3.8, the
conventional 1-D autocorrelation method could only detect the axial velocity
component, and the 1-D estimator ignoring the swept-scan effect produced a large
bias. Note that the velocity shown in this figure was limited within +£30 mm/s, and the
actual estimation results for the 1-D estimator were larger than those displayed. The
k-space estimator provided the accurate velocity vector information though the

estimation variance was slightly larger than that in panel (c).

3.4 Discussion and Concluding Remarks

In this chapter, based on the k-space modeling technique introduced in Chapter 2,
we proposed an efficient vector velocity estimator that combines the velocity
estimates within several axial spatial frequencies. The experimental results
demonstrated that the k-space velocity estimator can correct angle estimation bias
caused by the swept scanning, and provide more accurate vector velocity estimation

than conventional narrowband velocity estimation methods.

As shown in Section 3.2.1, the lateral and axial kernel sizes are chosen according
to the maximum detectable lateral (in the scanning direction) and axial velocity
components, respectively. Although the determination of the kernel size in a swept
scan is based on the PSF, it is conceptually identical to the number of firings and the
range gate in a step scan. In the later case, the number of firings has to be large
enough so that the observation time is longer than the lateral transit time [40], whereas
the range gate length is determined to assure that the Doppler bandwidth is governed
by the lateral transit time rather than the gate length [40]. Note that for the

conventional spectral-broadening-based methods in a step scan, due to its narrowband
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characteristics, the pulse length that determines the axial length of the sample volume
is required to be sufficiently long to provide accurate velocity estimation at the center
frequency. In comparison, since the k-space velocity estimator is a wideband

technique, the pulse length has less effects on the velocity estimation.

Simulation and experimental results for the proposed k-space velocity estimator
showed that axial velocity estimation is more robust than lateral velocity estimation.
One of the main reasons is that the lateral velocity resolution is lower than the axial
velocity resolution by a factor of f, /7 =6(see Section 2.2.1). Other reasons

include the mean frequency estimation being less sensitive to spectral variation and,
most importantly, less influenced by the observation window. As indicated in Figs.
3.2(a) and 3.3(a), an 8Ax10A kernel is sufficient for accurate lateral velocity
estimation in the direction opposite to the scanning direction. However, such a kernel
is too small for lateral velocities in the scanning direction even though the estimation
variance in this case is greatly reduced. Note that the aforementioned situation is
unrelated to the scan speed. Slowing down the transducer simply improves the lateral
velocity resolution (Eq. (2.13)) and is irrelevant to the overestimation of the lateral
velocity in the scanning direction. This problem can be solved by increasing the
kernel size or detecting the lateral velocity in the next frame. However, these two
methods cannot be applied to flows exhibiting spatial or temporal variations. An
alternative method is to predict the truncated region outside the selected kernel using
autoregressive modeling [41]. In this case, since the estimation variance is not large,

1-D rather than 2-D autoregressive prediction is sufficient to obtain reliable estimates.

In the experiment, the transducer was tilted and scanned laterally to emulate 2-D
motion of the speckle phantom. The results indicated that the use of a tilted transducer
for flow measurements using the swept-scan technique might result in poor estimation
of the velocity vector even if the tilt angle is small. For example, for a scan speed of
20 mm/s and a tilt angle of 10°, there is a difference of 3.5 mm/s between the actual
and estimated axial velocities, which is larger than the axial velocity resolution of
1.25 mm/s. Hence, especially for slow flows, accurate velocity measurement has to
take this effect into account. Other experimental factors affecting the accuracy of the
vector velocity estimation include the limited depth of field and the instability of the
scanning motor, as discussed in Section 3.3. Both factors lead to spectral variation and

degrade the velocity estimation especially when the spectral bandwidth is small.

Finally, although the analyses and the estimation results presented in this chapter
were performed at the focal range of the transducer, they are also valid in the

non-focal region. In this case, an additional quadratic phase curvature — equal to the
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difference between the phase curvature at the focal range and the range of interest —
has to be imposed on the aperture function in (2.6). Thus, if the scan speed is much
smaller than the sound velocity, the lateral spatial spectrum at the non-focal range is
still an even function and the axial velocity estimation is not affected. For lateral
velocity estimation, the proportionality between the relative lateral velocity and the
lateral spatial spectral bandwidth still holds outside the focus. However, the scaling
factor y should be set dynamically along the range. Therefore, a lookup table for y

is required to perform vector velocity estimation on the entire image.
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Chapter 4 Experimental Results

In this chapter, the efficacy of the proposed k-space vector velocity estimator in a
swept-scan system presented in Chapter 3 was further evaluated with both in vitro and
in vivo experiments. In both experiments, the kernel size used for velocity estimation
was 8Ax10A. The bandwidth threshold was —12 dB and y was 0.33. For all velocity
results shown here, a negative lateral velocity represents movement away from the
scanning direction whereas a negative axial velocity represents movement toward the

transducer.

4.1 In Vitro Results

Néedle

'Doppiqé angle

Blood-mimicking fluid Phantom

Fig. 4.1. The in vitro flow experimental setup.

In vitro experiments with blood-mimicking fluid were conducted using the setup
illustrated in Fig. 4.1. A needle with a diameter of 1.5 mm connected to a tube was
embedded inside a speckle phantom as a flow pathway. A pump (Cole-Palmer, Vernon
Hills, IL) was used to produce flow velocities between 15 and 30 mm/s. As indicated
in Fig. 4.1, the transducer was scanned from right to left at 20 mm/s, and the flow
direction was toward it. Six Doppler angles of 29°, 45.2°, 59.2°, 70.4°, 82.6°, and 90°
were measured. Only the flow data acquired around the focus were used to estimate
the Doppler angle. At each angle, five different realizations were generated. As an
example, a swept-scanned image containing a flow with a Doppler angle of 59.2° is
displayed with a 40-dB dynamic range in Fig. 4.2(a). Fig. 4.2(b) shows the k-space
representation of the kernel indicated by a white box in Fig. 4.2(a). Eleven estimates

of the axial velocity component (dashed line) and the lateral velocity component
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(solid line) corresponding to 11 different axial spatial frequencies are shown in Fig.
4.2(c), where an axial spatial frequency index of six represents the center axial spatial

frequency.

Axial (mm)

Axial spatial frequency (1/mm)
=

7 -6 -5 —4 3 %000 -50 0 50 100
Lateral (mm) Lateral spatial frequency (1/mm)
(@) (b)
0 -

Axial velocity
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_4 0 I I 1 1 1

2 4 6 8 10
Axial spatial frequency index
(c)

Fig. 4.2. In vitro flow experimental results. (a) A 40-dB swept-scanned image containing a flow at an
angle of 59.2°. The white box indicates the selected kernel. (b) The k-space representation of the selected
kernel displayed with a 20-dB dynamic range. (c) The estimates of the axial (dashed line) and lateral

(solid line) velocity components as functions of f .

Fig. 4.3 shows the estimated Doppler angles using the 1-D estimator (dashed line)
and the k-space estimator (heavy solid line). As a comparison, the result for the
conventional spectral-broadening-based method (i.e., the 1-D estimator without
considering the swept-scan effect) is shown as a light solid line. The corresponding
mean and standard deviation values are listed in Table 4.1. The k-space estimator had

an average angle estimation bias of 2.6° and standard deviations from 2.2° to 8.2°,

53



whereas the 1-D estimator had an average angle estimation bias of 3.4° and standard

deviations from 5.8° to 13.3°. When the swept-scan effect was ignored, the average

angle estimation bias became 15° and the standard deviations were from 2.7° to 6.6°.

These experimental results demonstrate that a wide range of Doppler angles can be

correctly estimated using the k-space estimator.
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Fig. 4.3. Flow experimental results. Doppler angles are estimated using the 1-D estimator (dashed line)

and the k-space estimator (heavy solid line). As a comparison, the light solid line represents the 1-D

estimator ignoring the swept-scan effect (denoted as 1-D (WC)). The dotted line shows the actual

Doppler angles.

Table 4.1. Doppler angle estimations on a flow phantom using the 1-D estimator, the k-space

estimator, and the 1-D estimator ignoring the swept-scan effect (mean + one standard deviation)

Doppler angle (°)

(without correction)

1-D estimator

1-D estimator

k-space estimator

29.0
45.2
59.2
70.4
82.6
90.0

58.7+49
72.6+2.9
73.7+6.6
82.2+2.7
84.7+2.8
85.8+3.9

29.8+13.3
46.0 +10.0
61.6+13.1
754 +£6.7
782+9.5
83.0+£5.8

30.7+8.2
456=+17.5
63.0+2.2
722+33
79.0+4.6
85.6+4.0
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4.2 In Vivo Results

To test the performance of the k-space velocity estimator, in vivo flow
measurements on mouse tails were performed. The mice were properly anesthetized
and a side of the tail containing a vein was scanned. The scan speed in this experiment
was 10 mm/s (PRI = 100 ps and Ax = 1 um). Fig. 4.4(a) shows one of the B-mode
images over a 50-dB dynamic range, from which a vessel is clearly visible. As an
initial investigation, the color Doppler image using the 1-D autocorrelator (see
Section 1.1.1) with proper post processing is displayed in Fig. 4.4(b). Every pixel in
this image was formed by using 16 successive scan lines and a 4\ range gate, and no
angle correction was done (thus, only the axial velocity components were detected).
In addition, a Chebyshev type II, 8th-order IIR high-pass filter was employed as a
wall filter. This wall filter was applied to the whole data set before performing the
velocity estimation. As indicated in Fig. 4.4(b), the axial velocity components in the
vessel were around 10 mm/s. By consecutively scanning the same region, the vessel
boundary was detected from the consecutive B-mode images and the measured
Doppler angle was around 55°.

The velocities and angles were individually estimated for four different kernels
indicated as four color boxes in Fig, 4.4(a). The white, blue and red boxes correspond
to the flow regions with the increasing range, whereas the black box corresponds to
the tissue. Different from the in vitro measurements, the vessel size in this case is
smaller than the kernel size. To remove the clutter signals, we used a 2-D, IIR
high-pass filter with the same cut-off lateral spatial frequency along the axial spatial
frequency. The cut-off frequency was chosen empirically according to spectra of
stationary tissues. The ability of this 2-D wall filter in clutter rejection is demonstrated
in Fig. 4.5. Fig. 4.5(a) shows the original white color kernel (left) and its k-space
representation (right). Fig. 4.5(b) shows the results after applying an 8th-order
Chebyshev type II, 2-D IIR filter. It can be seen that the signals outside the vessel are
almost suppressed. Fig. 4.5(c) shows the results of the rejected clutter signals. The

signals with lower frequencies are still present in the vessel.
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Fig. 4.4. An in vivo flow measurement in a mouse tail (Doppler angle ~ 55°). (a) B-mode image
(displayed over a 50-dB dynamic range). (b) Color Doppler image (in units of mm/s) using the 1-D

autocorrelator. Note that angle correction was not used in panel (b).
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Fig. 4.5. Results of the 2-D wall filter applied to the white box in Fig. 4.4(a). B-mode images (left panels)
and the corresponding k-space representations (right panels) (a) before and (b) after the wall filtering are
shown. The results for the rejected clutter signals are shown in panel (c). All images are displayed over a
30-dB dynamic range. Note that the red line shown in panel (b) represents the estimated mean lateral

spatial frequencies corresponding to the axial velocity.

Fig. 4.6 specifically illustrates the lateral spatial spectrum at the center axial
spatial frequency before (light solid line) and after the wall filtering (heavy solid line).

Note that the horizontal axis represents the equivalent axial velocity. It is observed
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that though a slight overlap is present between the flow and clutter signals, the
frequencies with larger intensities for the flow signals still can be identified. The
estimated axial (dashed line) and lateral (solid line) velocities corresponding to 9
different axial spatial frequencies are shown in Fig. 4.7, where the circles represent
the results using the 1-D estimator. By averaging 9 estimates, the estimated axial and
lateral velocities for the k-space estimator (dotted lines) were —11.1 mm/s and —15.9
mm/s, respectively. This yields a Doppler angle of 55.2°, consistent with the actual

Doppler angle.

&0} Original
— After wall filtering

8040 30 20 -10 0 10 20 30 40 50
Velocity (mm/s)

Fig. 4.6. The lateral spatial spectrum at the center axial spatial frequency before (light solid line) and after

the wall filtering (heavy solid line) for the white box shown in Fig. 4.4(a). Note that the horizontal axis

represents the equivalent axial velocity.

----- Axial velocity
-6 — Lateral velocity
K-space result
-8r 1D result

2 4 6 8 10

Axial spatial frequency index
Fig. 4.7. The result of the k-space velocity estimator for the white box in Fig. 4.4(a). The estimated axial
(dashed line) and lateral velocities (solid line) corresponding to 9 different axial spatial frequencies are
shown. The circles represent the results of the 1-D estimator, and the dotted lines are the results of the

k-space estimator.
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For all four color boxes shown in Fig. 4.4(a), the estimation results using the 1-D
and k-space estimators are compared in Table 4.2. Note that the wall filter was not
applied to the black box (i.e., the tissue region). It is shown that the k-space estimator
can accurately estimate the Doppler angles for the white and blue boxes. For the red
box, however, the Doppler angle is overestimated significantly. This is mainly
attributed to two facts: (i) the insufficient SNR in this region increases the estimate
variance, and (ii) the bandwidth becomes wider at the non-focal range. To
demonstrate the robustness of the k-space velocity estimator, five successive
measurements for the white box were made and the results are listed in Table 4.3. The
estimated angle for the k-space estimator was 55.4°+8.3° (mean * standard deviation),
better than 48.7°+18.8° for the 1-D estimator.

Table 4.2. Velocity and Doppler angle estimations for the four boxes shown in Fig. 4.4(a) using

the 1-D and k-space vector velocity estimators

White box Black box Blue box Red box

(blood) (tissue) (blood) (blood)
Axial velocity (mm/s) —=11.1(—1112) 0.1(0.1) —6.4 (—6.2) =7 (-17.6)
Lateral velocity (mm/s) —15.9 (=17.1) —0.4 (3.6) —9.1(—2.8) =34 (=36)
Doppler angle (°) 55.2 (56.8) N/A 54.6 (23.8) 78.4 (78)

"The actual Doppler angle is around 55°
“The values in the brackets represent the results of the 1-D estimator

Table 4.3. Velocity and Doppler angle estimations for the white box shown in Fig. 4.4(a) with

five different realizations using the 1-D and k-space vector velocity estimators

Axial velocity Lateral velocity Doppler angle
(mm/s) (mmis) ©)
—8.90 (—9.4) —19.6 (—18.5) 65.5 (63.2)
—10.2 (-10.3) —9.4 (=3.1) 42.5(17.0)
—11.1 (~11.2) —15.9 (=17.1) 55.2(56.8)
—10.8 (—10.8) —17.0 (—18.7) 57.9 (60.0)
—10.5 (-10.1) —15.5 (—10.6) 55.9 (46.3)
Mean —10.3 (-10.4) —15.5 (=13.6) 55.4 (48.7)
Standard deviation 0.9 (0.7) 3.8 (6.7) 8.30 (18.8)

*The actual Doppler angle is around 55°
**The values in the brackets represent the results of the 1-D estimator
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The k-space estimator was further investigated at a larger Doppler angle where
the conventional Doppler-based technique produces a large estimate bias. Fig. 4.8
shows such a case in which the Doppler angle is approximately 75°. Figs. 4.8(a) and
(b) show the B-mode and color Doppler images, respectively. It is observed that the
estimated velocities in the vessel are generally below 10 mm/s away from the
transducer. Using the same display format as in Fig. 4.5, Fig. 4.9 depicts the resulting
filtered B-mode images and k-space representations for the white box shown in Fig.
4.8(a). The filtered lateral spatial spectrum (heavy solid line) at the center axial spatial
frequency is shown in Fig. 4.10, and compared with the one for the stationary tissue
(dashed line) indicated as the black box in Fig. 4.8(a). The spectral overlap in this

case is much more significant than that in the previous case.
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Fig. 4.8. An in vivo measurement in a mouse tail (Doppler angle ~ 75°). (a) B-mode image (displayed
over 50-dB dynamic range). (b) Color Doppler image (in units of mm/s) using the 1-D autocorrelator.

Note that angle correction was not used in panel (b).
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Fig. 4.9. Results of the 2-D wall filter applied to the white box in Fig. 4.8(a). B-mode images (left panels)
and the corresponding k-space representations (right panels) (a) before and (b) after the wall filtering are
shown. The results for the rejected clutter signals are shown in panel (c). All images are displayed over a

30-dB dynamic range. Note that the red line shown in panel (b) represents the estimated mean lateral

spatial frequencies corresponding to the axial velocity.
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Fig. 4.10. The lateral spatial spectrum at the center axial spatial frequency before (light solid line) and
after the wall filtering (heavy solid line) for the white box shown in Fig. 4.8(a). For comparison, the
dotted line corresponds to the black box (i.e., the tissue region) shown in Fig. 4.8(a) without wall

filtering.
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Fig. 4.11. The result of the k-space estimator for the white box in Fig. 4.8(a). The estimated axial (dashed

line) and lateral velocities (solid line) corresponding to 9 different axial spatial frequencies are shown.

The estimated axial and lateral velocities as a function of the axial spatial
frequency for the white box are shown in Fig. 4.11. The estimated axial velocity,
lateral velocity, and Doppler angle for the k-space estimator were 4.5 mm/s, —15.2
mm/s, and 73.5°, respectively. With five successive measurements at the white box,
Table 4.4 summaries the estimation results using the 1-D and k-space estimators. The
estimated angle for the k-space estimator was 69.6°+3.7°, compared to 71.5°+4.7° for
the 1-D estimator. Due to presence of the severe spectral overlap, the estimated axial
and lateral velocities are over- and under-estimated, respectively, which causes an

underestimation in Doppler angle estimation.
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Table 4.4. Velocity and Doppler angle estimations for the white box shown in Fig. 4.8(a) with

five different realizations using the 1-D and k-space vector velocity estimators

Axial velocity Lateral velocity Doppler angle

(mm/s) (mml/s) ©)

4.5 (4.4) —15.2 (—16.9) 73.5 (75.4)

5.4(5.8) —12.8 (—-13.7) 67.1 (67.3)

54(5.5) —11.6 (—12.0) 64.9 (65.5)

4.9 (5.3) —16.0 (—19.8) 72.9 (75.0)

5.6 (5.0) —14.8 (—17.9) 69.4 (74.4)
Mean 52(5.2) —14.1 (-16.1) 69.6 (71.5)

Standard deviation 0.5(0.5) 1.8 (3.2) 3.7(4.7)

"The actual Doppler angle is around 75°
“The values in the brackets represent the results of the 1-D estimator

4.3 Discussion and Concluding Remarks

In this chapter, both in vitro and in vivo experiments were conducted to
investigate the feasibility of the proposed k-space vector velocity estimator. These
experimental results demonstrated that the A-space velocity estimator can correct for
the angle estimation bias caused by the swept scan. Furthermore, compared to the 1-D
estimator using only the center axial spatial frequency, the k-space estimator can

efficiently reduce velocity estimation errors.

In the in vivo experiments, the scan speed was set to 10 mm/s according to the
analyses in Section 2.2.3. In Fig. 2.8, at the scan speed equal to 10 mm/s, a critical
angle of 55° corresponds to a detectable velocity vector of around 8 mm/s, which
allows the accurate velocity estimation in the first in vivo experiment. However, a
critical angle of 75° at this scan speed yields an extremely large minimally detectable
velocity and therefore, the spectral overlap is present inevitably and causes an slight
angle estimation bias in the second in vivo experiment. In this case, decreasing the
scan speed can reduce the spectral overlap and improve the angle estimation if the
motor control is not a problem. However, our system currently can only provide the
stable motor control at the scan speed above 10 mm/s and limits our further

investigations below this scan speed.

The in vivo results demonstrated the robustness of the k-space estimator even in
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the presence of the clutter signals. It was shown that employing a 2-D wall filter is
capable of removing the clutter signals effectively. The 2-D wall filter applied here
had the cut-off lateral spatial frequencies independent of the axial spatial frequency.
Nonetheless, if the spectral overlap between the flow and clutter signals becomes
non-negligible, a 2-D wall filter with the variable cut-off lateral spatial frequencies
increasing with the axial spatial frequency will be desirable. In this case, since the
filter is non-separable in rectangular coordinates, the required number of

computations is more than that in the case of a filter with a fixed cut-off frequency.

The color Doppler images shown in Figs. 4.4(b) and 4.8(b) were the results with
the wall filter being applied to the whole scanned data set. This is different from the
conventional step-scan method in which the filter is simply applied to the data
obtained with a few number of firings. As mentioned in Section 1.2.2, the transient
response of IIR filters affects the first few data and therefore degrades the
performance of velocity estimation in a step scan. In contrast, the transient response is
absent in a swept scan except at the edges of the scanned image. To investigate the
effects of the transient response on velocity estimation in a step scan, the wall filter
with zero initialization was individually applied to the data set spanning 16 scan lines.
Note that this is not identical to the step scan but helps the understanding of such a
transient effect. The results are shown in Fig. 4.12(b) and compared to the case of the
swept scan shown in Fig. 4.12(a) (note that Fig. 4.12(a) is identical to Fig. 4.4(b)). It
is shown the transient response results in several false flows that are not present in the
B-mode image (see Fig. 4.4(a)) and also increases the estimation variance. The results

demonstrate the advantage of the wall filter applied in a swept scan.

Finally, the in vivo results also indicated that the performance of the k-space
estimator degrades as the SNR decreases. The main reason is that the maximum
frequency determined by the threshold method is susceptible to the noise. A more
robust maximum frequency estimation method, such as integrated power spectrum
methods, can be used to solve this problem [55]. However, it is not clear whether this
method is more affected by the presence of the clutter signals than the threshold
method. Another method is to increase the SNR of the system using coded excitation
[56]. We will examine the possibility of velocity estimation with this technique in
Chapter 5.
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Fig. 4.12. Comparison of the color Doppler images by applying the wall filter to (a) the whole data set
(spanning 4000 scan lines) and (b) the partial data set (16 scan lines). Note that panel (a) is identical to
Fig. 4.4(b).
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Chapter 5 Discussion

5.1 K-space Estimation in Swept-scan vs. Spectral-

broadening-based Estimation in Step-scan

In this section, the k-space vector velocity estimator in a swept scan is compared
to the conventional spectral-broadening-based techniques in a step scan. To obtain the
accurate lateral velocity estimation, both methods require a sufficiently long
observation window. Given the same PRI and axial window length (i.e., the range
gate), both methods have the same observation time if the number of repeated firings
(in step scanning) is equal to the number of scan lines (in swept scanning). In Chapter
3, it was shown that the required kernel size for the k-space estimator is 8Ax10A.
Hence, regardless of its improvement in the frame rate, the spatial resolution for the
k-space estimator is worse than that for the spectral-broadening-based technique in a
step scan (the lateral spatial resolution is 2A according to Table 2.1). Nonetheless, the
k-space estimator is capable of detecting the direction of the lateral velocity, which is

not possible for the conventional technique in a step scan.

Before further comparing the performances of both techniques, the required
number of repeated firings for the conventional spectral-broadening-based technique
is evaluated. Instead of using the transit time [40], a spatial-domain method that is
similar to the analysis on the kernel size in a swept scan is introduced. This is depicted
in Fig. 5.1, where a moving object in a step scan (panel (a)) can be equivalently
represented in a swept scan. A 2-D moving object in a step scan can be viewed as an
axially moving object in a swept scan with a scan speed equal to the lateral velocity
component of the object (panel (b)). This produces a tilted PSF as shown in panel (c).

To preserve the —6-dB lateral width of the resulting PSF, the required number of
firings N, must satisfy

(N, —1)PRI

Uy sin 6|2 Af,,,, (5.1)

Rearrange (5.1) as
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(N, —1)PRI > ’V—m (5.2)
Uy SIN G

1.e., the observation time has to be longer than the transit time [35]. N, increases as

the lateral object velocity decreases. Once N, is determined, the required axial

window size is (N, —1)PRI

Uy COS 6". For instance, according to Table 2.1, in order

to detect a velocity of 30 mm/s with a Doppler angle larger than 10°, 144 firings with

an 11X range gate are required.

(@) (b) (€)

E A Axial

E Uyy; COS O : - Z:
z’lobj l/ |
@ @ A .

v

D) |-

Scan speed = |uobj sin 49|
Repeated firings

Fig. 5.1. Illustration of a moving object in a step scan (panel (a)) being represented equivalently in a
swept scan (panel (b)). The resulting PSF is shown in panel (c). The dashed box indicates the required

observation window for vector velocity estimation.

The influence of number of firings on the accuracy of the bandwidth estimation
was further investigated by single-object simulations. The simulations are identical to
those used in a swept scan (see Section 3.2.1). Figs. 5.2(a) and (b) show the
estimated —12-dB Doppler bandwidth as a function of the lateral velocity for different
combinations of N, and the range gate length when the velocity vector was fixed at
30 and 50 mm/s, respectively. The proportionality between the bandwidth and the
lateral velocity component in a step scan roughly holds for N, =303 with a 201
range gate, but such large firings are not feasible for a real-time system. N, <65 1is

insufficient to obtain such a proportional relationship. Different from the results
obtained using (5.1), N, =151 is simply adequate to detect lateral velocities higher
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than 30 mm/s.
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Fig. 5.2. Effects of the number of repeated firings in a step scan on the —12-dB Doppler bandwidth. The
velocity vector was fixed at (a) 30 mm/s and (b) 50 mm/s. ‘33frgsx20)’ represents 33 firings with a 20\

range gate.

Simulation results of the velocity estimation for the k-space estimator (right
column) and the conventional technique in a step scan (left column) are compared in
Fig. 5.3, which is on the basis that both estimators have the same range gate length
(10%) and the observation time (151 firings vs. 8A lateral kernel spanning 151 scan
lines). In these simulations, the flow velocity vector was 30 mm/s with a Doppler
angle ranging from —90° to 0°. Other parameters are the same as those in Section 3.2.2.
Figs. 5.3(a)—(c) show the estimated lateral velocities, axial velocities, and Doppler
angles, respectively. For the conventional technique in a step scan, two different
estimation methods using the center frequency (called the narrowband estimator) and
15 RF frequencies (called the wideband estimator) are shown. The k-space estimator
averaged the estimates from 15 axial spatial frequencies. Overall, due to the

insufficient observation window, the lateral velocities in a step scan are overestimated
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and angle estimation errors are significant at smaller angles. Fig. 5.3 demonstrates that,

under the same observation window with an adequate size, the k-space estimator
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Fig. 5.3. Comparison of constant—flow simulation results between the step- (left panels) and swept-scan
(right panels) methods. Panels (a)—(c) correspond to the estimates of lateral velocities, axial velocities,
and Doppler angles, respectively. For the step-scan method, 151 firings with a 10\ range gate were used.
For the swept-scan method, the kernel size was 8Ax10A. For both scanning methods, the dashed lines
represent the estimates using only the center (axial spatial) frequency, whereas the solid lines are those

using 15 RF (axial spatial) frequencies.
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provides a wider range of angles than the conventional technique in a step scan. The
superiority of the k-space estimator is due to the fact that at a given Doppler angle,
swept scanning increases the bandwidth and thus decreases the required observation
window. Employing spatial averaging can effectively increase the observation time
required for the conventional technique in a step scan [40], but the advantage of

spatial resolution in a step scan over swept scan is limited.

5.2 K-space Vector Velocity Estimator Using Coded

Excitation

Transmitting a coded signal and compressing received echoes properly can
improve the SNR and the penetration depth [56]. Compared to conventional pulsed
excitation with a few cycles, coded signals with large time-bandwidth products have
longer durations without sacrificing the bandwidths. Therefore, given the same peak
transmission power, the SNR in a coded excitation system is theoretically improved
by a factor equal to the time-bandwidth product of the coded signal. The practical
SNR improvement depends on' both the spectral shapes of the code and the
compression filter [56]. Since the attenuation increases with the operating frequency,
coded excitation is of particular interest in high-frequency ultrasound. In this section,
effects of the coded signal on the k-space velocity estimator are examined by

simulations.

A linear frequency modulated waveform (also known as a chirp) was used. It has
the property that the instantaneous frequency varies linearly with time. The PSFs and
the corresponding k-space representations in a swept-scanned chirp excitation system
are illustrated in Fig. 5.4. In this figure, the chirp had a duration of 2.5us within which
the frequency increased from 20 to 60 MHz. A Chebyshev-shaped matched filter
capable of suppressing sidelobes to a —55dB level was used as a compression filter.
Other simulation parameters were the same as those listed in Table 2.1. Figs. 5.4(a)
and (b) show the results of the stationary object without and with compression,
respectively, whereas (c) and (d) show those of the object moving with a velocity of
30 mm/s and a Doppler angle of —30°. It is found that the results with compression are
similar to those with pulsed excitation shown in Fig. 2.4. Moreover, the compression
filter does not affect the k-space representation, except that the axial spatial bandwidth

is slightly reduced due to the shaping window applied in the matched filter.
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To further investigate the feasibility of the k-space vector velocity estimator
using coded excitation, constant flows with a velocity of 30 mm/s and Doppler angles
ranging from —90° to 0° were simulated. Except for the transmitted signal, the
simulation conditions were identical to those in Section 3.2.2. The parameters for the
k-space estimator used here (including the kernel size, the bandwidth threshold, the
scaling factor, and the number of axial spatial frequencies) were also identical to those
in Section 3.2.2. The velocity estimation results using the k-space estimator are shown
in Fig. 5.5. Figs. 5.5(a)—(c) show the estimated lateral velocities, axial velocities, and
Doppler angles, respectively. The estimation results before (dashed lines) and after
(solid lines) compression are compared to each other. The dotted lines represent the
actual values. Ten realizations were generated to produce the mean and standard
deviation values. Compared to the case with pulsed excitation (see Fig. 3.2), it is
shown that the k-space velocity estimator also performs well using coded excitation
with compression. Furthermore, although the axial kernel size (101) is less than the
chirp length (501), the performance of velocity estimation without compression does
not degrade significantly. This is because the kernel mainly truncates the upper and
lower axial spatial frequencies, and has less effects around the center axial spatial
frequencies used for averaging. Therefore, if the kernel is large enough to maintain
the center axial spatial frequency, the k-space velocity estimator can also be

performed on the uncompressed flow data.

5.3 Applying K-space Estimator to Electronic-scanning

Array Systems

Although the proposed k-space velocity estimator is mainly developed in a
mechanical swept-scan system, applying it to a transducer array with electronic
scanning is straightforward. In this case, since the elements accounting for
transmission and reception have no relative displacement during the pulse-echo round
trip time (i.e., d =0), the term e’” =1 in (2.6) and the k-space representations

described in Section 2.1 are unchanged, except that the scan speed u_, is replaced

scan

by Ax/PRI. A potential advantage of electronic scanning over mechanical scanning

is that the velocity estimation is free from the errors caused by the variations in the

motor speed.

The type of the array has a great impact on the performance of the k-space
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estimator. In a phased-array system, the beam steering capability allows the scan line
increment (i.e., Ax) to be much less than a wavelength. In a linear-array system, on
the other hand, Ax is typically on the order of the wavelength. Hence, for a given
PRI, flow signals in a linear-array system are more decorrelated. Moreover, the
number of scan lines within the kernel is much less than that in a phased-array system.
Large Ax may also cause the spectral aliasing and limit the maximum detectable
velocity (see Section 2.2.2). These factors lead to the conclusion that the k-space
estimator should perform better in a phased-array system than in a linear-array

system.

5.4 Power Doppler in Swept-scan

To provide accurate velocity vector estimation in a swept scan, the kernel size
required for the k-space estimator is shown to be as large as 8Ax10A (~ 0.3 mmx0.4
mm). For measuring microvascular structures (e.g., tumor angiogenesis), however,
such a kernel may include a variety of velocity vectors, which makes the k-space
estimator inadequate for this application. In this case, since the vessels are distributed
closely and non-uniformly, techniques capable of providing the high sensitivity rather
than flow direction information are  demanded. In other words, echoes from flows are
usually weak enough so that quantitative velocity estimation is relatively difficult. To
increase the sensitivity of flow detection, Power Doppler in which spectral energy of
flow signals is displayed is often used to provide qualitative visualization of flow

patterns in conventional color Doppler imaging.

Because the lateral spatial spectrum of flow signals in a swept scan broadens
linearly with the relative lateral velocity over the scan speed (see (2.9)), the resulting
spectral energy increases at the same rate when the spectrum is normalized to its
maximum. Therefore, employing Power Doppler in a swept-scan system has to
remove the effect of the scanning speed on spectral energy. Note that the 2-D
spectrum can be utilized in the calculation of spectral energy. In this case, before
combining the spectral energy of the lateral spatial spectra at different axial spatial
frequencies, the individual lateral spectral spectra have to be normalized to their
individual maxima, and the resulting spectral energy has to remove the dependence on

the axial spatial frequency.

In order to provide the sufficient spatial resolution, the kernel used for Power

Doppler must be small enough. As a result, spectral energy may be not strictly
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proportional to the relative lateral velocity (see Fig. 3.1) and its dependence on the
scan speed may be overcompensated. Proper correction of the relationship between

spectral energy and the scan speed according to the kernel size is therefore required to
provide an appropriate spectral energy map.

75



Chapter 6 Conclusions and Future Works

In this thesis, effects of the swept-scan technique on vector velocity estimation
were investigated using a k-space approach. This k-space modeling provided an
accurate description of 2-D motion in a swept scan. With this technique, it was
demonstrated that the swept-scan technique introduced an additional spectral
broadening proportional to the scan speed. Experimental results showed that applying
the conventional spectral-broadening-based technique to a swept-scan system resulted

in an estimation bias as well as an increase in estimation variance.

Based on the k-space modeling, a wideband vector velocity estimation technique
in a swept scan was proposed. Both simulation and experimental results demonstrated
that the proposed velocity estimator can not only correct an estimation bias due to the
swept scan, but also outperform conventional narrowband estimation techniques
utilizing only the center frequency of the excitation. Furthermore, the proposed
velocity estimator also performed better than conventional spectral-broadening-based

techniques applied in a step scan in terms of the frame rate and estimation accuracy.

Future works will continue in wivo investigations of the performance of the
proposed vector velocity estimator to the vessels with more clinical values using
mouse animal models, such as carotid, ascending, renal, abdominal, and major arteries.
Characteristics of flow pulsation and turbulence within these vessels may have a
significant impact on the accuracy of bandwidth estimation. In addition, to assess
these flow velocities with a sufficient SNR, the penetration and system sensitivity
need to be improved. Therefore, we will also experimentally evaluate the use of coded
excitation and/or contrast agents in high-frequency flow velocity vector estimation. It
should be noted that combining coded excitation with contrast agents is advantageous
for clutter suppression [57]. Another potential technique for clutter reduction with
contrast agents is pulse inversion Doppler [58]. Both techniques are particularly
applicable to the detection of slow flow velocities in a swept scan and will be
investigated.
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Appendix A Approximation of (2.2)

The k-space representation in a swept scan described in (2.2) can be rewritten as

dZ

Palf ) =G0 A 2 L) A= 25, f — d)e

d

ooz ——

6" (e [ =2z (f - £ 1) A (=22, f1) f. — )T

G'(f) =2 B~

I 2

(A.1)

Let f%=f", — f-d/4zs; (A.1) then becomes
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(A.2)

If f.d <<x for f, corresponding to the nonzero spectrum values, the phase terms in the

bracket can be approximated as 1&j7f.d. (A.2) can therefore be approximated as

Po(for ) = G (f)e 2T e [ Ay (= 22, /] f. = d/2) (1 - jaf d)
* Ay (=22, f, | f. —d/2)(+ jaf.d)]
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(A.3)

Neglecting the term containing @” in the bracket, (A.3) can be approximated as
g g g pp
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