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中文摘要 

頻率大於 20MHz 的高頻超音波影像系統能夠觀察細微的組織以及量測微弱

血流速度，然而由於高頻陣列探頭製作技術的困難，目前高頻系統大都採用單一

探頭、機械掃瞄的方式來取得影像資訊，掃瞄的方法主要採用離散步進的方式

(step scan)，這種方法相當耗時，無法提供即時的血流資訊。另一種稱作掃掠式

掃瞄的技術(swept scan)則是讓探頭連續不間斷地移動，因此能大幅縮短成像的時

間。雖然掃掠式掃瞄已應用於目前的高頻系統，然而探頭的連續移動對於流速的

估計有著不可忽略的影響。為此，本論文主要目的則是從理論面以及實驗探討掃

掠式掃瞄對於流速估計的效應，並針對掃掠式高頻系統提出一個新的定量流速估

計方法。 

本文首先利用二維空間頻譜的概念(稱為 k-space)來量化掃掠式掃瞄對於二

維流速估測的影響。我們證明移動物體的空間頻譜等效於其時間頻譜 (亦即，由

都卜勒頻率以及 RF 頻率所構成的二維頻譜)。另外，相較於離散式掃瞄，掃掠式

掃瞄造成都卜勒頻寬的變動，此頻寬變動導致流速估計的偏差及變異。為了校正

此一速度偏差並提高估計的精確度，我們提出一個基於 k-space 的流速向量估計

方法。我們利用模擬以及體外流體實驗來驗證所提出的新方法，此外，我們亦利

用 45MHz 的高頻系統來測量老鼠尾巴內的靜脈流速，實驗結果顯示所提出的流

速向量估計方法適用於掃掠式高頻系統，並能有效地降低流速以及血管角度估計

的誤差。 

本研究之主要貢獻，在於以 k-space 之方式建構超音波血流分析之理論架

構，並完整分析掃掠式掃描對於流速計算之影響，提升超音波小動物影像中定量

血流分析之能力。 
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Abstract 

The rapid developments in high-frequency ultrasound systems (operating at 
higher than 20 MHz) have allowed visualization of fine tissue structures and 
assessment of small vessels with slow flows. Due to the lack of high-frequency arrays, 
however, most current high-frequency systems use mechanically scanned, 
single-element transducers that are moved through a series of discrete positions. This 
scan technique, called the step scan, is relatively time consuming and cannot provide 
flow information in real-time. An alternative technique, called the swept scan, 
involves continuous scanning a transducer and is capable of improving the data 
acquisition time. Although the swept-scan technique is currently employed in 
high-frequency ultrasound systems, the continuous transducer movement may have 
non-negligible effects on accuracy of velocity estimation. It is therefore the purpose of 
this thesis to thoroughly investigate such effects, and to further develop a new 
quantitative flow estimation method. 

In this thesis, a spatial frequency domain (i.e., k-space) approach is employed to 
quantify the effects of swept scanning on the spectral-broadening-based vector 
velocity estimation method. It is shown that the k-space representation of a 2-D 
moving object is equivalent to a Doppler-RF frequency domain representation, and 
that transducer movement in the swept-scan technique results in a change in Doppler 
bandwidth. The spectral broadening caused by swept scanning introduces velocity 
estimation bias and variance that are not present in the step-scan technique. In order to 
correct such effects and improve velocity estimation accuracy, a robust vector velocity 
estimation method is developed based on the proposed k-space approach. Both 
simulations and in vitro experiments were performed to evaluate performance of the 
proposed vector velocity estimator. Furthermore, in vivo measurements of mouse tail 
vessels were also conducted using a 45-MHz transducer. The results demonstrate that 
the proposed vector velocity estimator is feasible in a swept scan and can effectively 
reduce the velocity and angle estimation errors. 

The main contributions of the thesis include development of a theoretical 
framework for ultrasonic flow analysis using a k-space approach. Based on this 
framework, effects of the swept scan on flow estimation were thoroughly investigated, 
thus making quantitative flow analysis in ultrasonic small animal imaging more 
feasible. 
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Chapter 1   Introduction 

1.1  Doppler Ultrasound 

Medical ultrasound systems have been well developed in assessing blood flow 
velocities. They can provide non-invasive detection of blood flow and display the 
velocity information in real-time. Typically, velocity estimation using ultrasound is 
mainly based on the Doppler principle, i.e., the received frequency from moving 
objects is shifted with respect to the transmitted frequency. The transducer generates 
an ultrasound beam that interacts with the moving objects (mainly red blood cells) in 
a vessel, and the backscattered echoes experience a frequency shift that can be used to 
detect the flow velocity. Generally, flow velocities in the human body are typically 
below 10 m/s and much less than the sound velocity (~1500 m/s) [1]. In this case, the 
frequency shift df  of the received signals relative to the center frequency cf  of the 

excitation is approximately (see Fig. 1.1) [1] 

,
cos2 obj

c
u

ff cd

θ
=                                              (1.1) 

where obju  denotes the object velocity, c  is the sound velocity, and θ  is the angle 

between the beam and the flow direction (known as the Doppler angle). By 
transmitting a continuous wave (called CW Doppler), flow velocities parallel to the 
beam direction can be obtained by estimating the frequency shift of the received 
signals indicated in (1.1).  

 

 

 

 

 

Fig. 1.1. Representation of a vessel intersected with the transmit beam. 
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The main limitation of CW Doppler is that it provides no range information. 
Alternatively, PW (pulsed wave) Doppler with which a group of short sinusoidal 
bursts is transmitted along a specific scan direction allows velocity estimation at a 
specific sample volume. Fig. 1.2 illustrates flow estimation in the PW Doppler mode. 
The received signals can be represented as a 2-D data set, with one axis representing 
the pulse firing index (called the slow-time axis) and the other axis being the time of 
flight (called the fast-time axis). The sampling interval in the slow-time axis is 
determined by the pulse repetition interval (PRI). The received data within a particular 
range gate are extracted and analyzed to measure the velocity parameters. Instead of 
estimating the frequency shift along the fast-time axis, the time difference due to the 

target motion between two consecutive received signals, given by cu θcosPRI2 obj  

[2], is detected. Such a time difference leads to a frequency shift equal to (1.1) in the 
corresponding frequency domain of the slow-time axis (i.e., the Doppler frequency 
domain). The resulting spectrum (referred to as the Doppler spectrum) at a specific 
range gate can be estimated by using the Fourier transform and then displayed as a 
function of time (called Spectral Doppler). To provide real-time visualization of 
velocity information on the image plane, the related velocity parameters, such as the 
mean Doppler frequency and Doppler spectral energy, are spatially encoded in colors 
and superimposed on the B-mode imaging (called Color and Power Doppler, 
respectively). Fig. 1.2(b) provides the typical signal processing required for flow 
velocity estimation in PW Doppler, where the wall filter is operated in the slow-time 
axis and used to remove the signals from stationary tissues or slowly moving vessel 
walls. 

In order to allow real-time display, the flow velocity in Color Doppler is 
typically estimated using 4−16 firings, which is much less than 64−128 pulses used in 
Spectral Doppler [2]. In this case, alternative efficient techniques rather than 
Fourier-transform-based methods are often adopted to provide reliable mean velocity 
estimation with a limited number of firings [3]−[6]. Note that these techniques mainly 
measure the axial velocity component (i.e., parallel to the beam direction). They can 
basically be classified as the phase- and time-shift estimation methods, and are 
described as follows. 

1.1.1  Phase-shift Estimation Techniques 

The phase shift caused by the target motion between two received signals can be 
detected by performing the autocorrelation between the flow samples along the 
slow-time axis [3]. Mathematically, the mean Doppler frequency (and thus the mean  
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Fig. 1.2. Description of velocity estimation in the pulsed-wave Doppler mode. (a) The received echoes 

from repeated firings are represented as a 2-D data set. The time or phase shift between consecutive 

waveforms due to the flow motion is detected to obtain the flow velocity. (b) Block diagram for the 

primary signal processing at the receiver. (The image is from the website: 

http://www.gehealthcare.com/usen/ultrasound/). 

 

axial velocity) is related to the autocorrelation function )(τR  of the flow signals by 
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Rjf                                  (1.2) 

where )(τϕ  is the phase of )(τR  and ‘ • ’ represents the first-order temporal 

derivative [3]. The above equation indicates the mean Doppler frequency can be 
estimated directly by evaluating the phase of )(τR  at the first lag. The 

autocorrelation technique indicated in (1.2) is known as the 1-D autocorrelator 
because the received signals within the range gate along the fast-time axis are 
summed and reduced to one sample per firing. A 2-D autocorrelation technique 
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proposed by Loupas et al. [4], on the other hand, performs the two-dimensional 
autocorrelation on the slow- and fast-time plane. The primary difference between 
them is in the estimation of the RF frequency (i.e., the corresponding frequency 
domain of the fast-time). Different from the 1-D autocorrelator that is evaluated at the 
center RF frequency, the 2-D autocorrelator estimates the mean RF frequency. 
Compared to the 1-D autocorrelator, the 2-D autocorrelator is capable of accounting 
for the spectral variation resulting from attenuation or multiple scattering [4]. 

The common problem for the phase-shift techniques is that the spectral aliasing 
limits the maximum detectable axial velocity. The maximum detectable axial velocity 
is given by [1] 

,
4_maxobj(axial) PRI

u λ
=                                               (1.3) 

which can be increased by decreasing the PRI, where λ  is the wavelength. On the 
other hand, a decrease in the PRI degrades the velocity resolution and limits the 
maximum penetration depth. Despite such limitations, phase-shift estimation 
techniques are computationally efficient and commonly employed in current 
commercial ultrasound systems. 

1.1.2  Time-shift Estimation Techniques  

Time-shift techniques directly measure the time difference between successive 
received signals at a range gate. This can be accomplished by employing 
cross-correlation methods [1], the matched filter method (known as the wideband 
maximum likelihood estimation) [5], or the efficient trajectory search techniques 
across the whole received data set (known as the butterfly search) [6]. The main 
benefit of time-shift techniques is aliasing immunity. In addition, these techniques, as 
well as the 2-D autocorrelator, can be regarded as a wideband approach compared to 
the 1-D autocorrelator in which the phase shift is estimated with respect to the center 
frequency. The bandwidth of the transmit pulse is therefore allowed to be as wide as 
that used in the B-mode imaging. 

1.2  High-frequency Flow Estimation 

Current commercial ultrasound systems mainly operate at a frequency ranging 
from 2 to 10 MHz. The corresponding spatial resolution is about 0.3−1.5 mm and the 
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detectable velocity is on the order of cm/s. At such frequencies, quantitative velocity 
estimation is only achievable for large arteries and veins in the human body. For small 
vessels (< 0.1 mm in diameter) with slow flows (< 10 mm/s) or closely spaced vessels, 
the performance of velocity estimation is limited. In this case, only qualitative 
visualization of flow patterns can be provided by using Power Doppler. 

Increasing the operating frequency to above 20 MHz (referred to as 
high-frequency ultrasound) provides an opportunity to quantitatively evaluate slow 
flows within a small vessel [7]−[22]. This is because both spatial and velocity 
resolutions can be simultaneously improved at higher frequencies [1]. Furthermore, 
another advantage of high-frequency ultrasound is that, as the frequency increases, the 
intensity of backscattered signals from red blood cells increases more than that from 
tissues [7], which leads to an improvement in the signal-to-clutter ratio. With these 
properties, high-frequency ultrasound allows flow measurements at the arteriolar and 
capillary level [12]−[16], and enables the study of vascular hemodynamics and 
morphology in the microcirculation [7]. 
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Fig. 1.3. High-frequency ultrasonic mouse imaging. (a) Spectral Doppler of aorta in an adult mouse 

(From the website: http://www.visualsonics.com/). (b) 40-MHz color Doppler (left) and power Doppler 

(right) images of a mouse tumor (From Li. et al. [20]). 

(a) 

(b)
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Clinical applications of high-frequency ultrasound include imaging and flow 
assessment of the eye [10]−[14] and skin [7]. In vivo measurements of the ciliary body 
circulation in the human iris has been demonstrated using 40-MHz CW Doppler [12]. 
The vasculature of the rabbit eye using Color Doppler was also investigated by Kruse 
et al. [14]. The ability of measuring small vessels allows the evaluation of eye 
diseases such as glaucoma and anterior segment tumors, and skin cancers such as 
malignant melanoma [7]. High-frequency ultrasound is potentially capable of 
investigating tumor angiogenesis [7], quantifying blood flow over tumor areas 
[15]−[20], and producing 3-D microcirculation flow maps [16]. 

In addition, high-frequency ultrasound is well suited for small animal imaging 
[19]−[22]. Small animals, such as mice, have similar physiological structures and 
gene composition to humans, and hence have been used to develop various disease 
models [20][21][23]. High-frequency ultrasonic mouse imaging systems have recently 
become commercially available (VisualSonicsTM Vevo Series, Toronto, Ontario, 
Canada). High-frequency ultrasound has shown its capabilities in flow measurements 
of mouse embryos [19], which can provide valuable information for developmental 
biology. The investigations of adult mouse vascular and cardiac systems [21] and 
tumor microcirculation [20] allow longitudinal studies of disease evolution and 
development of new drug and treatment strategies (see Fig. 1.3) [7]. Furthermore, 
high-frequency ultrasound has been used for the guided injection of genetic material 
to specific sites in mouse organs as well as developing mouse embryos [24]. With the 
aid of contrast agents, high-frequency ultrasound was also shown to be able to detect 
blood perfusion and quantify flow rate in the capillary body of the rabbit eye [25]. 
The incorporation of contrast agents with high-frequency ultrasound enables the 
development of novel flow estimation techniques [25] and offers opportunities for 
drug delivery [26]. 

1.2.1  Mechanical Scanning Techniques 

Because high-frequency arrays are not commercially available, high-frequency 
ultrasound systems involve mechanically scanning a single-element transducer [10]. 
Therefore, unlike array systems with electronic scanning, the frame rate in 
high-frequency ultrasound is greatly dependent on the scan speed of the transducer. 
The initial mechanical scanning technique, called the step scan or discrete scan [10], 
translates the transducer to a series of discrete positions, as illustrated in Fig. 1.4. The 
spacing between adjacent positions is typically on the order of a fraction of the 
excitation wavelength [10]. In flow velocity estimation using pulsed waves, several 
transmissions repeatedly interrogate the same region of interest at each scan position. 
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Because the transducer needs to be stopped and re-started during data acquisition, the 
step-scan technique is time consuming and makes it difficult to implement real-time 
color flow imaging [14].  

 

 

 

 

 

 

Fig. 1.4. Diagrams for two main mechanical scanning schemes: step scan (left) and swept scan (right). 

In the step-scan technique, the transducer is translated to a series of discrete positions. At each scan 

position, repeated firings are used to interrogate the same sample volume. In the swept-scan technique, 

the transducer is moved continuously while transmitting and receiving. The sample volume for each 

transmission event is not the same but overlapped closely. 

To speed up data acquisition and improve the frame rate, an alternative technique, 
called the swept scan or continuous scan, was proposed [14]. In the swept-scan 
technique, the transducer is translated continuously while pulse-echo data are being 
acquired. The spacing between adjacent scan lines is determined by the transducer 
speed and the PRI. Unlike the step-scan method, flow velocities in a swept scan are 
directly evaluated by extracting data from overlapping but different sample volumes. 
In this case, to maintain sufficient correlation between successive scan data, the scan 
line interval is typically much less than that in a step scan [14]. 

Ideally, compared to the step scan, the frame rate improvement from the swept 
scan is approximately by a factor of sxN R ΔΔ , where RN  and sΔ  are the number 

of firings and the scan line interval in a step scan, respectively, and xΔ  denotes the 
scan line interval in a swept scan. Given 2λ=Δs , 9~18 λλ=Δx  and 

16~4=RN  (for Color Doppler), the frame rate for the swept scan is maximally 

nearly four times faster than that for the step scan. In practice, when considering the 
motor speed control in a step scan (i.e., acceleration and deceleration stages between 
neighboring scan lines), the frame rate improvement for the swept scan is larger than 
the aforementioned value [14]. 

Swept-scan Step-scan 
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Another potential advantage of the swept-scan method is in the use of a wall 
filter [14], [27]. The wall filter is used to remove clutter signals from stationary or 
slow-moving surrounding tissues and retain flow signals. Generally, the 
infinite-impulse-response (IIR) filter is of interest because only a few filter orders can 
achieve the narrow transition band [28], [29]. However, IIR filters exhibit the 
transient response such that the first few flow data are often discarded. This has a 
significant effect in a step scan because only 4−16 flow data are available. Applying 
initialization techniques to IIR filters can reduce the transient response but at the 
expense of yielding a wide transition band [29]. In contrast, because the flow data in a 
swept scan are continuously sampled in the transducer scanning direction, the IIR 
filter can be applied over the whole frame and thus the transient response is only 
present at the beginning of the image [14]. 

1.2.2  Difficulties in High-frequency Flow Estimation 

Although high-frequency ultrasound is attractive for its better spatial and 
velocity resolutions, many difficulties and limitations in high-frequency flow velocity 
estimation exist. One of the primary disadvantages is the limited penetration depth 
resulting from frequency dependent attenuation. Moreover, a single-element 
transducer with a fixed focus is used. Both factors lead to an insufficient 
signal-to-noise ratio (SNR) at the ranges away from the focus. Consequently, 
high-frequency ultrasound is limited to investigate the vessels at superficial depths 
(less than 20 mm) [7]. Robust flow estimation techniques are therefore particularly 
needed for high-frequency flow estimation. 

In addition, though the swept-scan technique allows near real-time flow 
estimation, effects of continuously scanning the transducer on accuracy of velocity 
estimation have not been studied comprehensively. Due to the translation of the 
transducer, the flow data between neighboring scans decorrelate as a function of the 
scanning position [14][16][30]. Such decorrelation degrades the performance of axial 
velocity estimation using correlation techniques. 

Another difficulty in high frequency flow measurement is that slow flow velocity 
estimation is susceptible to the presence of clutters from surrounding tissues [16], 
especially when a large sample volume is used to improve the SNR. The spectral 
overlap between the flow and clutter signals might result in a large velocity estimate 
bias even if a wall filter is applied. A straightforward method to overcome this 
problem is to increase the PRI (see (1.3)). As a result, when the swept-scan technique 
is adopted, the performance of velocity estimation is greatly dependent on the scan 
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speed. Therefore, the choice of an adequate scan speed becomes critical. The system 
needs to be adjusted appropriately according to the velocity range of interest. 

Finally, quantitative velocity estimation using Doppler principles in 
high-frequency ultrasound requires knowledge of the flow direction. Conventional 
Doppler-based techniques introduced in Section 1.1 can only measure the velocity 
component parallel to the beam. The velocity component perpendicular to the beam 
(i.e., the lateral direction) produces no frequency shift and thus cannot be detected. As 
a result, a large bias of velocity estimation occurs when the beam-vessel angle is large. 
To precisely estimate the velocity with Doppler-based methods, the angle needs to be 
known. Current commercial ultrasound scanners allow operators to perform angle 
correction manually. This is done by marking a line along the vessel to be investigated 
from the B-mode image [2]. This technique works well only if the vessel is clearly 
visible. For small vessels, however, the Doppler angle might be difficult to measure 
simply from the B-mode image. Hence, an efficient 2-D velocity or angle estimation 
method in high-frequency ultrasound is of particular demand. 

1.3  Vector Velocity Estimation Methods 

Quantitative flow velocity estimation is of clinical value. For example, the 
volumetric flow rate, defined as the product of the vessel cross sectional area and the 
flow velocity, is an important indicator for many circulatory diseases. For small 
animal models, measuring the volumetric flow rate over time helps to study arterial, 
venous, and microvascular thrombosis [21], [23]. Conventional Doppler-based 
velocity estimation techniques are angle dependent and fail to obtain the complete 
flow information. To overcome this problem, several techniques aiming at estimating 
either the Doppler angle or the velocity vector have been intensively investigated in 
low-frequency ultrasound [31]−[42]. These techniques mainly include multiple beam 
methods [31], [32], spatial quadrature methods [33], [34], speckle tracking methods 
[35]−[37], and spectral-broadening-based methods [38]−[42]. Details of these 
methods are described below, and possibilities of their applications to high-frequency 
ultrasound are examined. 

1.3.1  Multiple Beam Methods 

Multiple beam methods are still based on Doppler principles, but employ two or 
more beams to measure additional velocity components projected on these beam 
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directions [31]. Fig. 1.5 depicts a typical multiple beam approach using two 
transducers to estimate the Doppler angle. Two beams generated simultaneously by 
two different transducers are properly oriented so that they are overlapped with each 
other at the region of interest. The individual velocity component along the 
corresponding beam is then measured. Since the angle between the two beams is 
known, combining it with two velocity estimates by using the triangulation method 
can yield the Doppler angle and the velocity vector. Extending the two-beam to 
three-beam technique can obtain the three-dimensional velocity vector [32]. Note that 
this method can also be realized with a single array that is divided into several 
sub-apertures. 

The main drawback of multiple beam methods is system complexity. Moreover, 
to obtain accurate velocity vector estimation, the angles between beams are required 
to be large enough, making this method difficult to implement in cardiac applications. 

 

 

 

 

 

 

Fig. 1.5. Multiple beam methods using two transducers. 

1.3.2  Spatial Quadrature Methods 

The spatial quadrature method was proposed separately by Anderson [33] and 
Jensen [34]. The basic idea behind this method is to generate a modulation on the 
radiation field along the lateral direction. In doing so, the lateral velocity component 
can produce the frequency shift along this direction in a manner similar to the 
conventional Doppler effect. Such a lateral modulation can be generated by 
combining two appropriate apodization functions across the receive aperture. Hence, a 
parallel receive processing is necessary. A simple way to produce a lateral modulation 
is to let the spatial frequency response of the point spread function (PSF), or 
equivalently, the effective aperture of the pulse-echo response, become single-sided 
[33]. This leads to a decrease in the spatial resolution. Due to the apodization imposed 

Flow direction 

1θ

2θ

Transducer 1 
Transducer 2 



 

11 

on the receive aperture, it is not clear whether the SNR is an issue for this method. 
Moreover, before performing the lateral velocity estimation, it is essential to align the 
received signals according to the estimated axial velocity component. Consequently, 
any misalignment may lead to the estimation error of the lateral velocity. 

1.3.3  Speckle Tracking Methods 

Speckle tracking methods are non-Doppler-based methods. They are capable of 
detecting motion and displacement between two different images, and have therefore 
been widely studied in many ultrasonic applications, such as strain estimation [43], 
motion compensation for freehand 3-D imaging [44], and flow estimation [35]−[37]. 
Basically, speckle tracking methods track the speckle pattern produced by the 
scatterers within a vessel over successive B-mode images using a pattern matching 
algorithm, such as cross-correlation [35] and sum-absolute-difference [36]. Fig. 1.6 
shows an illustration of the search process in a typical 2-D speckle tracking approach. 
A kernel for velocity estimation is selected in a reference image (left panel), and then 
tracked within a predefined search region to find the best match in the next image 
(right panel). Clearly, the spatial resolution of velocity estimation is determined by the 
kernel size, whereas the search region size determines the maximum detectable 
velocity. Once the displacement between the kernel and the best match pattern is 
identified, the velocity vector for this kernel can be calculated according to the time 
interval between the reference and the search images. 

Compared to other techniques, the primary disadvantage of speckle tracking 
methods is computational complexity. In addition, decorrelation between two speckle 
patterns degrades accuracy of velocity estimation, especially when the axial 
component is large or the Doppler angle is small [36]. Therefore, rapid image 
acquisition is required and the performance of this method applied in a 
mechanical-scan system is limited. Note that compared to transducer arrays capable of 
dynamic focusing, such decorrelation becomes more pronounced when a transducer 
with a fixed focus is used. To speed up data acquisition and decrease speckle 
decorrelation, Bohs et al. incorporated parallel receive beamforming into the original 
speckle tracking [37]. This method, named ensemble tracking, allows smaller 
translation between the speckle patterns at the expense of the velocity resolution. 
Even though ensemble tracking is more computationally efficient, the requirement of 
a transducer array capable of performing parallel beamforming limits its usage in 
high-frequency ultrasound. 

 



 

12 

 

Fig. 1.6. Illustration of the speckle tracking method for vector velocity estimation. A kernel in which the 

velocity is estimated is selected from a reference image, and then compared with other regions within a 

predefined search region in successive images using a pattern matching algorithm.  

1.3.4  Spectral-broadening-based Methods 

The velocity component perpendicular to the beam axis can be estimated using 
the bandwidth of the Doppler spectrum. The relationship between them is described 
by the transit-time spectral-broadening effect [38]. The transit time is defined as the 
time it takes for a scatterer to travel across the sample volume [1]. As illustrated in Fig. 
1.7, if the transit time of scatterers is determined by the sample volume width rather 
than its axial length, then the time duration of the Doppler signal at the slow-time axis 
is inversely proportional to the lateral velocity component of moving scatters. The 
resulting Doppler bandwidth is therefore proportional to the lateral velocity 
component [38].  

 

 

 

 

 

 

 

 

Fig. 1.7. The spectral-broadening-based vector velocity estimator. (a) Illustration of a vessel intersected 

with a beam by a angle of θ. (b) The received signal along the slow-time axis. (c) The corresponding 

Doppler spectrum with its bandwidth proportional to the lateral velocity component of moving targets. 
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Because only a single-element transducer is required, this method is attractive for 
high-frequency ultrasound. However, the success of this method relies on accuracy of 
the bandwidth estimation. Moreover, to assure the Doppler bandwidth is determined 
by the transit time, the observation time has to be longer than the transit time [40]. 
Therefore, a long data acquisition time is required, which makes this method 
originally only suitable for non-real-time Doppler modes such as Spectral Doppler 
[42]. The feasibility of this method in real-time applications was firstly investigated 
by Li et al. [40]. They employed a correlation-based method with spatial and/or 
temporal averaging schemes to reduce the data acquisition time. Without using any 
averaging scheme, Yeh and Li further suggested an extrapolation method to efficiently 
increase the observation time [41]. Besides, the performance of 
spectral-broadening-based methods is also affected by velocity gradients [41]. 
Velocity variations within the sample volume may broaden the spectrum and make the 
bandwidth estimation incorrect.  

While spectral-broadening-based methods are suitable for high-frequency 
ultrasound in terms of system and computational complexity, applying them to a 
swept-scan system is still problematic. In this case, the transducer movement also 
affects the spectral bandwidth and, consequently, the accuracy of lateral velocity 
estimation. Therefore, the relationship between the lateral velocity component and the 
spectral bandwidth in swept scanning needs to be quantified. 

1.4  A Brief Introduction to K-space 

K-space is a spatial frequency domain description of an imaging system and the 
targets [38]. Typically, the k-space representation of the imaging system is the 2-D 
Fourier transform of the system’s PSF. A complete formula regarding the k-space 
theory can be found in [45], which is originally derived based on the use of either a 
linear array with electronic scanning or a single-element transducer with mechanical 
step scanning. Here, we consider the case in a step scan. Let x -axis (the lateral 
direction) and z -axis (the axial direction) denote the transducer translation direction 
and the center scan line, respectively, as illustrated in Fig. 1.8(a). For a point target 
located at a focal range of zf on the z-axis that is much larger than the aperture size, 
Walker and Trahey showed that the corresponding k-space representation PST(fx, fz) is 
given by [45] 
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where fx and fz represent the lateral and axial spatial frequencies, respectively, c is the 
sound velocity, G is a scaling factor related to the target reflectivity, AT(x) and AR(x) 
denote the transmit and receive aperture functions, respectively, BPE(ft) denotes the 
pulse-echo frequency response (where ft is the temporal frequency and equal to cfz/2), 
and ‘∗ ’ denotes the convolution with respect to fx. The exponential term results from 
the linear phase change with increasing range. The transmit and receive aperture 
functions are real for the target at the focus, but can be complex by additionally 
imposing a phase curvature to account for the distance difference between the target 
depth and the focus. 

 

 

 

  

 

 

 

Fig. 1.8. The PSF (middle) and its k-space representation (right) for a stationary object located at the 

focus in a step scan (left). Both images are displayed over a 50-dB dynamic range. 

(1.4) indicates that the k-space representation at a specific fz (referred to as the 
lateral spatial spectrum) is simply the convolution of the transmit and receive aperture 
functions being spatially scaled and reversed. In other words, the lateral spatial 
spectrum is a scaled version of the effective aperture of the pulse-echo response. The 
scaling factor between them (i.e., the aperture index x and fx) is related by x = −2zf fx/fz. 
Note that the k-space representation is non-separable in rectangular coordinates (fx , fz). 
The PSF and the associated k-space representation of a stationary object in a step scan 
are illustrated in Figs. 1.8(b) and (c), respectively. The spectrum along fz is centered at 

λ2± . The lateral spatial spectrum, on the other hand, is centered at the origin. 

Meanwhile, the bandwidth of the lateral spatial spectrum increases with increasing fz. 
This results from the fact that an increase in the temporal frequency causes a decrease 
in the wavelength and consequently, an improvement in the lateral spatial resolution. 
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The k-space technique provides a comprehensive tool to analyze many ultrasonic 
imaging applications, such as spatial/frequency compounding, synthetic aperture 
techniques, and correlation-based phase aberration correction [45]. In addition, 
k-space was also applied to the analysis of speckle decorrelation caused by velocity 
gradients in flow estimation [46]. As will be presented in this thesis, k-space can also 
be used to describe 2-D motion in a swept-scan system and offer a new perspective on 
flow estimation. 

1.5  Description of the Experimental Setup 

We have previously developed a high-frequency digital ultrasound system for 
experimental purposes [19]. The system operates at a frequency of 45 MHz and is 
capable of displaying the B-mode, M-mode, color Doppler and power Doppler 
imaging. Several advanced imaging techniques, including the synthetic aperture 
focusing technique [47], [48], the generalized-coherent-factor-based adaptive 
weighting technique [49], coded excitation schemes, and robust flow estimation 
methods [5], [6], are employed to enhance its performance. Previous studies for small 
animal models demonstrated its ability in imaging mouse embryos [19], [47] and 
detecting tumor microcirculation [20]. 

 

 

 

 

 

 

Fig. 1.9. Block diagram of the experimental high-frequency ultrasound system. 

The block diagram for the experimental high frequency ultrasound system in this 
thesis is illustrated in Fig. 1.9. A single-crystal lithium niobate transducer (NIH 
Resource Center for Medical Ultrasonic Transducer Technology, Penn State 
University, University Park, PA) has a 45-MHz center frequency with a –6-dB 
fractional bandwidth of 55%. It is focused at 12 mm and has a diameter of 6 mm (thus 
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f-number = 2). By using a three-axis mechanical scanning system (CSIM, Taipei, 
Taiwan), the position of the transducer can be controlled to a precision of 1 μm. 
During data acquisition, proper acceleration and deceleration stages were employed to 
avoid the instability of the transducer movement. The transmitting signal was 
designed by using an 8-bit, 200-Msamples/s arbitrary-function generator (Signatec 
DAC200, Corona, CA), and then amplified by a power amplifier (Amplifier Research 
25A250A, Souderton, PA) before transmission. The received RF signals were 
enhanced by a pulser/receiver (Panametrics 5900, Waltham, MA) and then sampled 
by an 8-bit, 200-MHz A/D converter (Signatec PDA500). The sampled data were 
stored in PC and demodulated to baseband off-line for further processing.  

1.6  Scope and Dissertation Organization 

The swept-scan technique enables rapid data acquisition in high-frequency 
ultrasound systems with a single-element transducer. Its effects on the accuracy of 
velocity estimation are, however, not thoroughly investigated yet. The primary 
purposes of this thesis are (i) to quantify the effects of both lateral and axial motions 
in a swept-scan system, and (ii) to develop an efficient and robust vector velocity 
technique in a swept-scan high-frequency ultrasound system. Specifically, a k-space 
approach is employed to describe the 2-D motion. Based on this modeling technique, 
an efficient vector velocity estimation algorithm is developed. We refer to this new 
velocity estimation method as the k-space vector velocity estimator. 

This thesis is organized as follows. In Chapter 2, the proposed k-space modeling 
technique for 2-D motion in a swept scan is presented. The effects of swept scanning 
on both Doppler-based axial velocity estimation methods (autocorrelation-based 
methods) and spectral-broadening-based techniques are investigated theoretically and 
experimentally. The spectral difference of the flow data between swept and step 
scanning are also compared. Based on the k-space technique, limitations for velocity 
estimation in a swept-scan system are also analyzed. 

In Chapter 3, the proposed k-space vector velocity estimator is presented. The 
required kernel size for the k-space vector velocity estimation is determined 
analytically and confirmed by numerical simulations. Simulations and constant-flow 
phantom experiments are used to demonstrate the efficacy of the k-space vector 
velocity estimator. In Chapter 4, performance of the k-space vector velocity estimator 
is evaluated experimentally using a flow phantom. In addition, in vivo measurements 
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of the mouse tail vessels are conducted to further investigate its performance. The 
experimental results are also discussed. 

Chapter 5 discusses the applications of the proposed k-space estimator in coded 
excitation systems and electronic-scanning array systems. Moreover, performance of 
the k-space estimator is also compared to that of the conventional 
spectral-broadening-based techniques in a step scan. This thesis concludes in Chapter 
6 with description of future works. 
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Chapter 2   Effects of Swept Scanning on 

Velocity Estimation 

In order to understand the effects of the swept-scan technique on flow velocity 
estimation, this chapter employed a k-space approach based on the fact that in a swept 
scan the PSF of a moving target is deformed compared to that of a stationary target. 
Moreover, different motions result in different PSFs and their corresponding k-space 
representations. Furthermore, it is shown that the main difference between swept and 
step scanning is in the Doppler bandwidth, which increases linearly with the scanning 
speed in a swept scan.  

Based on the proposed k-space modeling, the effects of swept scanning on 
conventional 1-D and 2-D autocorrelation-based axial velocity estimators [3], [4], as 
well as the spectral-broadening-based velocity estimation method [40], are examined 
and investigated experimentally using a 45-MHz transducer. The results indicate that 
such effects must be corrected in order to obtain accurate estimation of flow 
velocities. 

 

 

 

 

 

 

Fig. 2.1. Schematic diagram of the swept-scan technique. 

2.1  Basic Principles 

Fig. 2.1 provides a schematic diagram for the swept-scan technique and the 
coordinates used throughout this chapter. The transducer translation direction is 
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denoted as the x-axis and the z-axis is located at the center scan line. The transducer is 
scanned continuously at a speed of uscan, and adjacent scan lines are separated by Δx = 
uscan PRI.  

 

Fig. 2.2. The geometrical relationship of transmission and reception in a swept scan. Note that d2/2zfc is 

the distance accounting for the constant phase difference between the transmit and the receive apertures. 

 

2.1.1  K-space Representation in a Swept-scan: a Stationary Object 

In (1.4), the k-space representation is derived based on the step scan and is not 
valid for the swept scan. Consider a stationary object located at a focal range of fz  

on the z-axis in a swept scan. As indicated in Fig. 2.2, the transducer has moved a 
distance of d = 2zfuscan/c after the echoes from the object are acquired. In this case, the 
receive aperture can be expressed as 
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where sinα ≅ d/zf. Compared to the transmit aperture AT(x), two phase terms are 
presented in the receive aperture: (i) exp(−j2πftd2/2zfc) is a constant phase shift that 
results from the transducer movement, and (ii) exp(−j2πft(x-d)sinα/c) is a linear phase 
term as a function of x specifying the steering-angle difference between the transmit 
and receive apertures. Incorporating (2.1) into (1.4) and recognizing that ft = cfz/2 and x 
= −2zf fx/fz, the k-space representation in a swept scan PSW(fx, fz) is 
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Note that d = 0 is the result for the step scan. Considering the case where the transducer 
aperture function is uniformly weighted (i.e., unapodized) with a width of a, (2.2) 
becomes 
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where fnum = zf/a represents the f-number and Π(•) denotes the rectangular function. 
Let m = fz/2fnum and n = fz/2zf; (2.3) then yields 
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Fig. 2.3. Comparison of the lateral spatial spectrum between swept scanning (top panel) and step 

scanning (bottom panel) under the condition where a stationary target is at the focus and the transducer 

aperture function is rectangular. m = fz/2fnum, n = fz/2zf, and fnum denotes the f-number. 
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According to (2.4), Fig. 2.3 compares the lateral spatial spectrum between swept and 
step scanning. It is shown that the lateral spatial spectrum in the swept scan is 
symmetric with respect to fx = −nd = −uscanfz/c, with a zero-to-zero bandwidth of 2m. On 
each side of the symmetry axis, the spectrum is sinusoidal with a period equal to 2/d. In 
contrast, the lateral spatial spectrum in step scanning is an even, triangular function 
with the same bandwidth of 2m. Accordingly, for a stationary object, swept scanning of 
a transducer produces both a shift and an oscillation in the lateral spatial spectrum.  

In most applications the transducer scan speed is within the range 1–100 mm/s, 
depending on the flow velocity range of interest. In this case, fxd << π for fx 
corresponding to the nonzero spectrum values, and hence (2.2) can be approximated as 
(see Appendix A) 
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Moreover, the lateral spectral shift (i.e., nd) caused by the swept scanning is at least four 
orders of magnitude smaller than the lateral spectral bandwidth (i.e., 2m). Hence, (2.5) 
can be further simplified to  
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With such an approximation, the k-space representation for the swept scan is simply 
that for the step scan multiplied by a phase term exp(jπfxd). The two scan methods 
exhibit identical spatial spectra (i.e., the magnitude of the k-space representation). 
Therefore, if the scan speed is much less than the sound velocity, both (2.6) and the 
bottom panel of Fig. 2.3 indicate two important properties regarding the lateral spatial 
spectrum when the target is at the focus and the transmit and receive apertures are 
identical and even functions: (i) the lateral spatial spectrum for a given fz is an even 
function of fx, and (ii) when each lateral spatial spectrum is normalized to its maximum, 
its bandwidth is proportional to fz/fnum. 

2.1.2  K-space Representation in a Swept-scan: 2-D Motion 

Now consider an object moving at a velocity of uobj and with a Doppler angle of 
θ, as indicated in Fig. 2.1. Assume that the object arrives at the focal point on the 
center scan line while the transducer is scanning this line. Fig. 2.4 shows the 
simulation results of the contour maps for the PSFs (left panels) and the associated 
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k-space representations (right panels) under different motion conditions. The velocity 
vector was fixed at 30 mm/s except for Fig 2.4(d), where 10 mm/s was used. The 
Field II ultrasound simulation program [50] was used with the simulation parameters 
listed in Table 2.1. Fig 2.4(a) shows the results for a stationary object. The left panel 
of Fig. 2.4(b) shows the PSF of the object moving axially away from the transducer (θ 
= 0°). It can be seen that its PSF deforms along the axial dimension relative to that of 
a stationary object. In general, if the axial displacement is less than the depth of field, 
the echoes of two successive scan lines are shifted axially, but weighted with different 
sound intensities. Such a shift is equal to the product of the axial velocity and the PRI.  

Table 2.1. Simulation parameters used in the thesis 

Simulation parameter Value 
Sound velocity (c) 1.48 mm/μs 
Center frequency 40 MHz 
Transducer fractional bandwidth  55% 
Diameter of transducer (a) 6 mm 
Focal length of transducer (zf) 12 mm 
Transducer scan speed (uscan) 20 mm/s 
Pulse repetition interval (PRI) 100 μs 
Transmission pulse two-cycle sinusoid 
Lateral sampling interval (Δx) 2 μm 
Axial sampling interval (Δz) 3.7 μm 

 

The left panels of Figs. 2.4(c) and (d) show the PSFs of an object moving 
laterally in the opposite (θ = −90°) and the same (θ = 90°) directions of the scanning, 
respectively. Compared to the PSF of a stationary object, the PSF in Fig. 2.4(c) is 
compressed in the lateral dimension while that in Fig. 2.4(d) is expanded, which is 
due to the relative lateral motion between the transducer and the object changing the 
lateral width of the PSF. In both cases, however, the PSFs in the axial dimension 
remain unchanged. For example, if the object and the transducer move with opposite 
velocities, the lateral width of the resulting PSF is half that of a stationary object. On 
the other hand, if the object moves synchronously with the transducer (i.e., the relative 
lateral velocity is zero), the resulting PSF is constant along the lateral dimension (i.e., 
its lateral width is infinite). Accordingly, the lateral width of the PSF varies with the 
relative lateral velocity over the transducer speed. 
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Fig. 2.4. Contour maps for PSFs (left panels) and the k-space representations (in baseband form, right 

panels) under different motion conditions with a vector velocity of 30 mm/s (except for (d), in which 10 

mm/s was used). (a) Stationary object. (b) Axially moving object with θ = 0°. (c) Laterally moving target 

with θ = −90°. (d) Laterally moving target with θ = 90°. (e) 2-D moving object with θ = −30°. 
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Based on the above discussion, assuming the axial displacement is within the 
depth of field, the PSF pSW_motion(x, z) for a 2-D moving object in a swept scan can be 
expressed as  

)cos,sin1(),( SWSW_motion θθ xvzxvpzxp −−= ,                       (2.7) 

where ν = uobj/uscan, and pSW(x, z) represents the PSF of a stationary object in a swept 
scan (i.e., the inverse Fourier transform of (2.6)). The use of the absolute value results 
from the lateral symmetry of the sound field generated by the transducer: the PSF 
scaled by 1−νsinθ is identical to that scaled by νsinθ −1. As shown in (2.7), the axial 
velocity component uobjcosθ causes an axial shift in the PSF, whereas the lateral 
velocity component uobjsinθ broadens or narrows the PSF in the lateral dimension. 
This is demonstrated in the left panel of Fig. 2.4(e) where the object moving with θ = 
−30°. By taking a 2-D Fourier transform of pSW_motion(x, z), the corresponding k-space 
representation PSW_motion(fx, fz) is given by 
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where PSW(fx, fz) is as given in (2.6). The axial shift in the PSF leads to a shift in the 
lateral spatial spectrum proportional to the axial velocity component and fz. For the 
lateral motion, each lateral spatial spectrum is broadened by⎪1−νsinθ⎪. The right 
panels of Fig. 2.4 demonstrate the k-space representations that (2.8) predicts. Based 
on (2.8), Fig. 2.5 further schematically illustrates the k-space representation of a 2-D 
moving object. Note that the center of each shifted lateral spatial spectrum is on the 
line passing through the origin of the entire frequency plane, with a slope of    
−1/νcosθ.  

Based on (2.6) and (2.8), the bandwidth bwk of the lateral spatial spectrum at a 
given fz can be expressed as  
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where γ is related to the aperture weighting function and the threshold used to 
determine the bandwidth, and urel = uscan − uobjsinθ represents the relative lateral 
velocity between the transducer and the object. Based on (2.9), the lateral velocity 
component can be obtained by estimating the bandwidth of each lateral spatial 
spectrum. 

 

 

 

 

 

 

Fig. 2.5. K-space representations for a stationary object (light) and an object moving at a Doppler angle 

of θ (heavy). ν is the ratio of the object velocity to the scan speed. 

2.1.3  Comparison Between Swept and Step Scanning 

Unlike conventional step-scan flow estimations performed in the temporal or 
temporal frequency domains [51], [52], the k-space motion modeling in swept 
scanning described in (2.8) is presented in the spatial frequency domain. To 
understand the impact of swept scanning on velocity estimation, it is necessary to 
examine the fundamental difference in the flow echoes between the step- and 
swept-scan methods. For this purpose, the spatial variables x and z are related to the 
temporal variables by 
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where τ is the data acquisition time (i.e., the slow time) and t is the fast time. Let fD 
and ft denote the Doppler and RF frequencies corresponding to the slow and fast times, 
respectively. Based on (2.10), the corresponding temporal frequency representation 
PSW_motion(fD, ft) of (2.8) is  
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where C is a scaling factor. Due to the linear relationship between the spatial and 
temporal (frequency) domains, PSW_motion(fD, ft) is a scaled version of the 
corresponding k-space representation PSW_motion(fx, fz). By applying (2.9) and (2.10), it 
is readily shown that in (2.11), the Doppler bandwidth bwD (i.e., the bandwidth along 
the Doppler frequency dimension) at a given RF frequency ft is given by 
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where γ′ is a scaling factor related to the aperture weighting function and the 
bandwidth threshold. In contrast to (2.9), here the Doppler bandwidth is directly 
proportional to urel.  

 

 

 

 

 

Fig. 2.6. Comparison of the temporal frequency representation for 2-D motion between (a) swept-scan 

and (b) step-scan methods. 

For the step-scan method, the corresponding temporal frequency representation 
and the Doppler bandwidth can be regarded as a special case of the swept-scan 
method in which uscan = 0. Fig. 2.6 compares the temporal spectra of the swept- and 
step-scan methods, which reveals that the only difference is in the Doppler bandwidth. 
The Doppler bandwidth in a step scan is proportional to the lateral velocity 
component, which agrees with the results derived from the transit-time spectral 
broadening effect [38]. In contrast, the Doppler bandwidth in a swept scan is 
proportional to the relative lateral velocity between the transducer and the moving 
object. Hence, when the lateral velocity component of the flow velocity is absent, no 
Doppler spectral broadening occurs in step-scanned flow echoes (i.e., the temporal 
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spectrum shown in Fig. 2.6(b) becomes a line segment), but an inherent Doppler 
spectral broadening proportional to the scan speed exists in swept-scanned echoes. 
Note that in this case, the bandwidth of the lateral spatial spectrum for the swept-scan 
method is irrelevant to the scan speed (see (2.9)). Fig. 2.6 also indicates that the 
step-scan method cannot discriminate the direction of the lateral velocity. Nonetheless, 
two lateral motions with opposite directions in a swept scan result in distinct spectra 
and hence are distinguishable. 

2.2  Effects of Swept-scanning on Vector Velocity Estimation 

The 1-D and 2-D autocorrelation-based axial velocity estimation techniques are 
commonly used for color flow imaging because of their computational efficiency [3], 
[4]. Conceptually, both estimators obtain the mean axial velocity by using an 
estimation of the spectral mean frequency: the 1-D autocorrelator estimates the mean 
Doppler frequency at the center RF frequency [3], and the 2-D autocorrelator 
estimates the slope of the dotted line in Fig. 2.5 [4] (see Section 1.1.1). As a result, 
velocity estimation errors increase for both estimators as the spectrum broadens [53]. 
Since the Doppler spectrum broadens linearly with the scan speed, the axial velocity 
estimation using the autocorrelation technique is expected to be more erroneous in a 
swept scan than in a step scan. Moreover, the estimation error is proportional to the 
relative lateral velocity. The above observations are verified experimentally in Section 
2.3. 

In swept scanning, the transducer can also be moved back and forth during image 
data acquisition. According to (2.8), the k-space spectral shift along the fx-axis in one 
scan direction is the opposite of the shift in the other direction. Moreover, the lateral 
spatial bandwidth also changes depending on the relative lateral velocity. 

In the following, the mean frequency and the spectral bandwidth estimation in 
the conventional vector velocity estimation method are further examined in a swept 
scan in terms of the velocity resolution, aliasing, and the presence of clutter signals. 
The analyses are based on the k-space modeling in (2.8), and the Doppler angle θ is 
restricted to within ±90°. For the numerical examples presented below, we assume 
that both transmit and receive apertures are rectangular (thus, γ = 0.5 for half the 
zero-to-zero bandwidth), and a –12-dB threshold is used to determine the lateral 
spatial bandwidth (hence, γ = 0.38). The other parameters are listed in Table 2.1. 
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2.2.1  Velocity Resolution 

According to (2.8) and (2.9), if the region of interest (or kernel) selected for the 
flow estimation spans NL scan lines, the axial velocity resolution and the lateral velocity 
resolution will be  

,

and ,1

scannum

L

num
obj(lat)

scan

L
obj(axial)

xzz

xzz

Wf
uf

PRINf
fu

Wf
u

PRINf
u

γγ
==Δ

==Δ

                                       (2.13) 

respectively, where Wx = NLΔx denotes the lateral kernel width. Note that γ is related to 
both the bandwidth threshold and the aperture weighting function. A scaling factor of 
fnum/γ exists between the axial and lateral velocity resolutions and, in general, fnum >γ; 
for example, γ ≤ 0.5 if the transmit and receive apertures are rectangular. In contrast, the 
f-number is typically greater than unity. Therefore, the lateral velocity resolution is 
worse than the axial velocity resolution by a factor of fnum/γ. If the lateral kernel width is 
8λ, the axial and lateral velocity resolutions at the central axial spatial frequency (i.e., fz 
= 2/λ, where λ is the wavelength) are 1.25 and 6.58 mm/s, respectively. 

As also indicated in (2.13), given a lateral kernel size, both the axial and lateral 
velocity resolutions can be improved simultaneously by decreasing the scan speed 
(either decreasing Δx or increasing the PRI). This indicates that the velocity resolution 
is improved at the expense of the frame rate. The lateral velocity resolution can also be 
improved by reducing the f-number. However, since the bandwidth of the lateral spatial 
spectrum is inversely proportional to the f-number (see (2.9)), decreasing the f-number 
increases the variance in the estimated lateral velocity. Therefore, a trade-off exists 
between the resolution and the variance in the estimated lateral velocity. 

2.2.2  Spectral Aliasing 

Spectral aliasing limits the maximum detectable velocity in Doppler-based 
estimations [1]. This aliasing occurs if the maximum lateral spatial frequency exceeds 
half the sampling rate along the lateral dimension; i.e., 
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We focus our discussion on the center axial spatial frequency. Note that the aliasing 
worsens at higher axial spatial frequencies. To avoid aliasing, the velocity has to satisfy 
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It can be readily seen that if fnum
2

 >> γ2 (which is valid in our case), to assure that 
aliasing is absent at all Doppler angles, the maximum detectable velocity uobj(max) is  
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which is γuscan/fnum less than that for step scanning indicated in (1.3). The maximum 
detectable velocity increases as the PRI or Δx decreases. Thus, increasing the scan 
speed does not necessarily increase the maximum detectable velocity. The effects of the 
scan speed on the maximum detectable velocity are shown in Fig. 2.7, in which each 
solid line depicts the variation in the maximum detectable velocity as a function of the 
PRI, and each dashed line indicates the variation as a function of Δx. Note that the solid 
line marked as ‘Δx = 0 μm’ is the maximum detectable velocity in step scanning. The 
figure shows that for a constant scan speed, different combinations of Δx and the PRI 
give rise to different maximum detectable velocities. The maximum detectable velocity 
can be improved more by decreasing the PRI than by decreasing Δx. For a given PRI, if 
Δx << λ, the second term on the right-hand side of (2.16) is much less than the first term, 
and the maximum dectable velocity in a swept scan is close to that in a step scan. As 
indicated in Fig. 2.7, if Δx = 2 μm and PRI = 100 μs (i.e., a scan speed of 20 mm/s), the 
maximum detectable velocity is 88.7 mm/s in a swept scan compared to 92.5 mm/s in a 
step scan. 

Even when spectral aliasing occurs, the velocity can still be estimated correctly by 
utilizing the 2-D characteristics of the spectrum. One technique to overcome the 
aliasing is based on the fact that for the aliasing spectrum, the line passing through the 
center of each lateral spatial spectrum does not pass through the origin of the spatial 
frequency plane [51]. The velocity estimate can be corrected by detecting such a 
condition.  

In addition, with the swept-scan technique, an aliasing uniquely exists in 
spectral-broadening-based lateral velocity estimation. As indicated in (2.7) and (2.9), a 
lateral velocity of uscan (1+s), where s > 0, cannot be discriminated from that of uscan 

(1−s). The scan speed, therefore, affects the detectable range of lateral velocities in the 
scanning direction. Increasing the scan speed enlarges the detectable lateral velocity 
range in the scanning direction, but it also increases the variance in the estimated lateral 
velocity. 
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Fig. 2.7. Effects of the scan speed on the maximum detectable velocity. The solid and dashed lines 

indicate the maximum detectable velocity as functions of the PRI and Δx, respectively. 

2.2.3  The Presence of Clutter Signals 

In addition to flow signals, the selected kernel may contain clutter signals from 
surrounding tissues or the vessel walls. Such clutter signals appear in the vicinity of 
the zero lateral spatial frequency axis and their spectra may overlap those of the flow 
signals, which may degrade the accuracy of the velocity estimation. This spectral 
overlapping is more pronounced in swept scanning than in step scanning because the 
spectra of both the flow and the clutter signals are broadened in a swept scan [16]. 
The common method to remove clutter signals is to employ a high-pass filter. 
Nonetheless, if the spectrum overlapping is severe, the wall filter also removes the 
slow-velocity components of the flow; hence the presence of clutter signals limits the 
minimum detectable velocity. 

In the following analyses, the intensity ratio of the clutter signals to the flow 
signals is set to unity to simplify the expressions. To avoid spectral overlapping, the 
spectral shift for the flow in the lateral spatial frequency dimension must be larger 
than the sum of the lateral spatial bandwidths of the clutter and flow signals; i.e.,  
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For convenience, the sign in the bracket is changed to a plus. Hence, θ defined in 
figure 1 becomes –θ. Rewriting (2.17) yields 
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Note that (2.18) is independent of the axial spatial frequency. Considering the special 
case in which only the axial velocity component is present (i.e., θ = 0°), (2.18) 
becomes  
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Obviously, the minimum detectable velocity in this case is proportional to the 
transducer speed and inversely proportional to the f-number [16]. For example, for 
fnum = 2 and uscan = 20 mm/s, the minimum detectable velocity is 7.6 mm/s. 

Moreover, (2.18) can be rewritten as  

,cos2sin
obj

scan1
cr ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=≤ − φφθθ

u
u                                   (2.20) 

where φ = tan–1 (fnum/γ). The above equation states that given a scan speed and a 
velocity, the Doppler angle θ must be smaller than the critical angle θcr (i.e., –90°≤θ 
<θcr) to avoid the spectra of the clutter and flow signals overlapping. In other words, 
the critical angle represents the maximum detectable angle in the presence of clutter 
signals. Based on (2.20), Fig. 2.8 shows the critical angles as a function of velocity for 
different scan speeds, from which the following observations can be made. First, the 
spectral overlapping is absent in the region below each curve, and the velocity 
corresponding to θcr = 0° is the minimum detectable velocity predicted by (2.19). 
Second, for each curve, the critical angle increases and saturates to its maximum as 
the velocity increases. Because the second term on the right-hand side of (2.20) is 
greater than zero, the critical angle has an upper bound equal to φ, which represents 
the maximum detectable angle in a step scan. In the case of Fig. 2.8, the upper bound 
of the critical angle is around 80°. The third observation is that both the critical angle 
and the minimum detectable velocity can be increased simultaneously by reducing the 
scan speed. Finally, Fig. 2.8 provides a guideline for the choice of scan speed 
according to the velocity range of interest. For example, for measuring flow velocities 
around 5 mm/s, the scan speed should be below 5 mm/s to allow assessment over a 
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wide spatial angle. 

 

Fig. 2.8. Critical angles as a function of the vector velocity in the presence of clutter signals. Different 

curves represent different scan speeds. 

2.3  Experimental Investigations 

Experiments involving speckle phantoms were conducted to investigate Doppler 
spectral broadening caused by swept scanning and its effect on conventional 
autocorrelation-based axial velocity estimators. All experiments employed the 
transmission of three cycles of a 40-MHz sinusoid. The scan speed was varied by 
changing Δx with a fixed PRI of 100 μs. 

2.3.1  Doppler Spectral Broadening for a Stationary Phantom 

The proportionality between the Doppler bandwidth and the relative lateral 
velocity urel, as indicated in (2.12), was verified experimentally. A gelatin phantom 
containing graphite powder with uniform distribution was placed in a water tank.  
The transducer was scanned continuously and laterally to obtain the 2-D scan data set. 
A kernel around the focus was extracted from the 2-D scan data set, and was then 
multiplied by a 2-D Hanning window prior to 2-D Fourier transformation. The spatial  
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Fig. 2.9. Dependence of the –12-dB Doppler bandwidth on the scan speed (solid line) for a stationary 

phantom. Three kernels with the following sizes were investigated: (a) 16λ×20λ (lateral× axial), (b) 

8λ×10λ, and (c) 4λ×8λ. The error bars represent ± one standard deviation. The dotted lines are identical 

and are the best linear fits of the estimates with a 16λ×20λ kernel. 

 

(a) 

(c) 

(b) 
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spectrum obtained was represented as the corresponding temporal spectrum using 
(2.11). The dependence of the –12-dB Doppler bandwidth on the scan speed, using 
different kernel sizes, is shown by the solid lines in Fig. 2.9. Figs. 2.9(a)–(c) show the 
results with kernel sizes (lateral by axial) of 16λ×20λ, 8λ×10λ, and 4λ×8λ, respectively. 
The dotted lines are identical and represent the best linear fit of the estimates using a 
kernel size of 16λ×20λ. For all the panels, only the Doppler spectrum at the center RF 
frequency was used to estimate the bandwidth. Thirty independent experiments were 
performed under each condition to obtain the mean and standard deviation (indicated 
by error bars). With a 16λ×20λ kernel, the Doppler bandwidth is proportional to the 
scan speed (note that urel is equal to the scan speed in this study); for an 8λ×10λ kernel, 
such proportionality approximately holds when the scan speed is above 25 mm/s; 
however, when the scan speed is lower than 25 mm/s, the Doppler bandwidth is 
overestimated compared to the proportionality line, and this becomes significant for a 
4λ×8λ kernel. This can be explained by (2.7): as the scan speed decreases, the PSF 
broadens until its lateral width is larger than the lateral kernel width. In this case, the 
Doppler bandwidth is dominated by the kernel size. Furthermore, Fig. 2.9 also 
indicates that the variance of the Doppler bandwidth estimation increases with the 
scan speed. 

2.3.2  Performance of Autocorrelation-based Axial Velocity 
Estimators 

The accuracy of the 1-D and 2-D autocorrelation-based axial velocity estimators 
under different scan speeds was investigated. The axial motion of the phantom was 
emulated by moving the transducer axially; hence, the transducer in this experiment 
was moved in two dimensions. A kernel around the focus with a size of 4λ×8λ was 
used to estimate the velocity. Effects of different scan speeds for axial velocity 
estimations of 0 and 10 mm/s are shown in Fig. 2.10(a), where the dashed and solid 
lines correspond to the 1-D and the 2-D autocorrelators, respectively. As a 
performance index, Fig. 2.10(b) shows the corresponding standard deviation estimate 
of the Doppler spectrum for the axial velocities of 0 mm/s (solid line) and 10 mm/s 
(dashed line). The dotted line in Fig. 2.10(b) represents the linear fit of the estimated 
standard deviation when a larger kernel (16λ×20λ) is used. In both figures, 30 
realizations were used to obtain the statistical results. It can be seen that the velocity 
estimation errors for both 1-D and 2-D autocorrelators generally increase with the 
transducer scan speed. Due to the limited observation window, the proportionality 
between the estimate variance and the scan speed does not hold strictly, as explained 
earlier. In general, the 2-D autocorrelator outperforms the 1-D autocorrelator in terms 
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of the estimate variance. Besides, although the Doppler bandwidth is irrelevant to the 
axial velocity component, the estimate variance for 10 mm/s is evidently greater than 
that for 0 mm/s when the scan speed is below 15 mm/s. This is mainly attributable to 
the depth of field of the transducer used here not being large enough (the depth of 
field is 2fnum

2λ = 8λ in this case) and lacking uniformity, resulting in spectral 
fluctuation. 

 

 

Fig. 2.10. (a) Effects of the scan speed on the 1-D (dashed lines) and 2-D (solid lines) 

autocorrelation-based axial velocity estimators. Axial velocities of 0 and 10 mm/s were investigated. (b) 

The corresponding standard deviation estimate of the Doppler spectrum as a function of the scan speed 

for axial velocities of 0 mm/s (dashed line) and 10 mm/s (solid line). The dotted line in (b) is the best 

linear fit of the esimates using a 16λ×20λ kernel. In each figure, error bars represent ± one standard 

deviation. 

(b) 

(a) 
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2.4  Concluding Remarks 

This chapter investigated how continuously scanning the transducer affected the 
estimation of flow velocity in high-frequency ultrasound. Specifically, a k-space 
approach was employed to analyze 2-D motion with an arbitrary Doppler angle. 
Based on this k-space motion modeling, the temporal spectral contents of the swept- 
and step-scan methods were compared. The experimental results demonstrated that 
with the swept-scan technique, the Doppler bandwidth is approximately proportional 
to the relative lateral velocity between the transducer and the moving object when the 
kernel is large. Therefore, conventional lateral velocity estimation based on the 
proportionality between the Doppler bandwidth and the lateral velocity must be 
corrected. For instance, if the scan speed is 20 mm/s and a target moves laterally at 
10 mm/s in the direction opposite to the scanning, the lateral velocity estimate for this 
target without considering the swept-scan effect is 30 mm/s. 

We also examined the performance of the vector velocity estimation method (i.e., 
Doppler-based axial velocity estimator plus spectral-broadening-based lateral velocity 
estimator) in swept scanning. The results indicated that the performance indices 
related to flow velocity estimation, such as velocity resolution, estimate variance, and 
maximum/minimum detectable velocity, are compromised under different system 
settings. We summarize these results as follows. Increasing the scan speed improves 
the frame rate and the maximum detectable lateral velocity in the scanning direction; 
however, it limits the velocity resolution, the minimum detectable velocity, and the 
maximum detectable angle. Decreasing the f-number improves the lateral velocity 
resolution and the spatial resolution, but it increases the estimate variance and limits 
the minimum detectable velocity and the maximum detectable angle. 

The experimental results also showed that the accuracy of spectral bandwidth 
estimation and the autocorrelation-based axial velocity estimators decreases as the 
scan speed increases. Due to the limited kernel size, the Doppler bandwidth 
estimation did not increase strictly proportionally with the relative lateral velocity. 
Thus, a large kernel size is required for accurate velocity estimation. Finally, the 
analyses performed did not consider flow velocity gradients, which may broaden the 
spectrum and degrade the performance of the spectral-broadening-based lateral 
velocity estimator [40], [41]. To address these problems, an efficient velocity 
estimator to reduce the estimation errors caused by the use of swept scanning and the 
presence of velocity gradients will be presented in Chapter 3. 
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Chapter 3   K-space Vector Velocity Estimator 

in Swept-scan  

The conventional Doppler-based velocity estimation method limits its ability to 
detect the axial velocity component. Several techniques to quantify the non-axial 
velocity component are proposed, as mentioned in Section 1.4. Among them, the 
spectral-broadening-based velocity estimation method is particularly suited to a 
single-element transducer swept-scan system. However, as shown in Chapter 2, this 
technique includes a velocity bias proportional to the scan speed if the swept-scan 
effect is ignored. Furthermore, the spectral bandwidth increases with the scan speed, 
which makes the lateral velocity estimation with this technique in a swept scan more 
erroneous than in a step scan.  

In order to correct the velocity estimation bias and reduce the estimation variance 
caused by the swept scan, an efficient vector velocity estimator is proposed based on 
the k-space approach described in Chapter 2. In the proposed method (referred to as 
the k-space vector velocity estimator), several vector velocity estimates corresponding 
to different axial spatial frequencies are averaged. Both simulations and constant flow 
phantom experiments were performed to demonstrate the validity of the proposed 
vector velocity estimator. 

3.1  Theory 

The k-space modeling technique described in (2.8) indicates that the lateral 
spatial spectral shift and bandwidth are related to the axial and lateral velocities, 
respectively. Therefore, the velocity vector can be obtained by combining the 
estimates from the mean frequency and the bandwidth of each lateral spatial spectrum. 
Accordingly, a procedure for estimating the velocity vector is proposed below. First, a 
kernel in an image is selected, which is then windowed (e.g., using a Hanning 
function) prior to 2-D Fourier transformation. Both the mean frequency and the 
bandwidth are estimated for each lateral spatial spectrum. To reduce the estimation 
error, the velocity estimate for each lateral spatial spectrum is further averaged across 
different axial spatial frequencies.  
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The mean frequency xf  of a lateral spatial spectrum at a specific zf  is 

calculated by 
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where 2
SW ),( zx ffP′  is the 2-D power spectral density of the selected kernel. Note 

that the above equation is similar to the mean Doppler frequency estimation in 
conventional autocorrelation-based axial velocity estimation [40]. According to (2.8), 

the averaged axial velocity estimate ( θcosobju ) is obtained by combining a total of 

M  estimates corresponding to M  different axial spatial frequencies (fzi), i.e., 
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The bandwidth of the lateral spatial spectrum )( zk fbw  in (2.9) is defined as the 

difference between )( zx ff  and the maximum lateral spatial frequency. The main 

advantage of this definition over other criteria, such as the standard deviation, is that 
estimating the maximum frequency is relatively insensitive to velocity gradients [54]. 
Another potential advantage is that the maximum frequency estimation is less affected 

by the wall filter used. Thus, the averaged lateral velocity estimate ( θsinobju ) is given 

by 
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Note that the above equation is derived based on 0rel ≥u  or θsinobjscan uu ≥ . Since 

relu±  yield the same lateral spatial bandwidth, aliasing occurs when the lateral 

velocity component in the scanning direction is larger than the scan speed. That is, the 
lateral velocities )1(scan su ±  in the scanning direction, where 0≥s , cannot be 

distinguished.  
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The Doppler angle estimate θ̂  is readily found by combining (3.2) and (3.3), 
i.e., 
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Since the full 2-D spectrum is used, the k-space vector velocity estimator described 
here can be viewed as a wideband technique, in contrast to conventional narrowband 
methods such as the 1-D-autocorrelation-based [40] and the FFT-based vector velocity 
estimators [41], [42] which use only the center RF frequency (or equivalently, the 
center axial spatial frequency in our case). In the following sections, the conventional 
narrowband velocity estimator is referred to as the 1-D velocity estimator to 
distinguish it from the k-space velocity estimator. 

3.2  Simulation Results 

3.2.1  Kernel Size 

Due to the finite observation window, the size of the kernel used to evaluate the 
flow velocity affects the accuracy of the k-space velocity estimator, in particular the 
bandwidth estimation more than the mean frequency estimation. In general, it is 
desirable to use a kernel that is large enough to incorporate the entire PSF. Since the 
PSF broadens with decreasing relu , the required lateral kernel size is thus determined 

by the maximum detectable lateral velocity component in the scanning direction. On 
the other hand, the required axial kernel size is determined by the maximum 
detectable axial velocity component. Based on the PSF described in (2.7), the required 
kernel size is derived theoretically below. To avoid improper truncation, the lateral 
kernel size should be greater than the –6-dB effective beamwidth effw . That is,  
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where LN  is the number of scan lines in the kernel. Note that effw  is equal to 

numfλ  for a stationary object [1]; moreover, effw  increases as relu  decreases. Once 

LN  is determined according to (3.5), the required axial kernel has to be larger than 

the axial shift caused by the axial velocity component. We therefore have  
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or equivalently,  

,
cos

)1(
)1(

scan

obj

L

A

u
u

xN
zN θ

≥
Δ−
Δ−                                         (3.7) 

where zΔ  denotes the sampling interval along the axial direction and AN  is the 

required number of axial sampling points. (3.7) indicates that the ratio of the axial to 
lateral kernel sizes must be larger than the ratio of the axial velocity component to the 
scan speed. The lateral and axial kernel sizes can be determined from (3.5) and (3.6), 
respectively. For example, according to the parameters indicated in Table 2.1, in order 
to detect a target velocity of 30 mm/s with =θ 30°, the required kernel size is at least 
8λ (lateral)×10.4λ (axial). In practice, the kernel should be slightly larger than the 
predicted one due to the windowing function applied. Note that the above analysis of 
the kernel size is similar to that of the aspect ratio associated with conventional 
spectral-broadening-based vector velocity estimation methods [40].  

The effects of kernel size on the lateral spatial bandwidth estimation were further 
studied by simulating a moving target. Doppler angles ranging from –90° to 40° with 
a step of 10° were investigated (see Fig. 2.1). A Hanning window was applied to the 
kernel prior to 2-D Fourier transformation. Fig. 3.1 shows the effects of kernel size on 
the –12-dB bandwidth for vector velocities of 30 mm/s (top panel) and 50 mm/s 
(bottom panel), where only the lateral spatial spectrum at the center axial spatial 
frequency was used for the bandwidth estimation. The horizontal axis is relu . In this 
case, no lateral velocity component is present when mm/s 20rel =u . Ideally, the 
lateral spatial bandwidth is proportional to relu  (see (2.9)), and Fig. 3.1 shows that 
the bandwidth is approximately proportional to relu  as the kernel size increases. For 
smaller relu , however, such a relationship does not hold and the bandwidths become 

overestimated. As mentioned earlier, this is because the PSF expands laterally and 
hence becomes truncated. In this case, the bandwidth becomes dominated by the 
lateral kernel size. Fig. 3.1 suggests that an 8λ×10λ kernel is suitable for the vector 
velocity estimation, and is adopted in the sections below. 
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Fig. 3.1. Effects of kernel size on the –12-dB bandwidth for vector velocities of 30 mm/s (top panel) and 

50 mm/s (bottom panel). The horizontal axis is relu . 

3.2.2  Constant Flows  

To verify the proposed k-space velocity estimator, a speckle-generating object 
moving at a constant velocity of 30 mm/s was simulated. Doppler angles from –90° to 
40° with a step of 10° were investigated. The –12-dB threshold was used to determine 
the lateral spatial bandwidth, and the scaling factor γ  in (3.3) was empirically set to 

0.33. Eleven axial spatial frequencies (i.e., M =11) were used for averaging. Fig. 3.2 
shows the estimated velocity components and Doppler angles using the k-space 
velocity estimator (solid lines). Fig. 3.2(a) shows the estimated relu , and Figs. 3.2(b) 

and (c) show the estimated axial velocity components and Doppler angles, 
respectively. As a comparison, the results for the 1-D velocity estimator are shown as 
dashed lines. The dotted lines represent the actual values. Note that a positive axial 
velocity represents movement away from the transducer. Also note that the axial 
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velocity estimates for the Doppler angles within 0~40° are similar to those 
within –40~0° and are not shown here for display convenience. In this figure, ten 
independent realizations were generated to produce the mean and standard deviation 
values.  

 

 

Fig. 3.2. Constant-flow simulation results. The k-space (solid lines) and 1-D (dashed lines) vector 

velocity estimators are compared. (a) Estimated relu . (b) Estimated axial velocity components. (c) 

Estimated Doppler angles. The dotted lines are the actual values. The error bars represent ± one standard 

deviation relative to the mean. 

 
Compared Fig. 3.2(a) to Fig. 3.2(b), the axial velocity estimates are more 

accurate and robust than the lateral velocity estimates. The estimated lateral velocities 
in the direction opposite to the scanning direction (i.e., mm/s 20rel >u ) are in close 

agreement with the actual ones. The lateral velocities in the scanning direction, 
however, are overestimated due to the finite kernel size (as explained in Section 3.2.1). 
However, a smaller relu  narrows the lateral spatial spectrum and consequently 

reduces the estimation variance, as evident in Fig. 3.2(a). Generally speaking, the 

(a) (b) 

(c)
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estimates of lateral velocities in the direction opposite to the scanning direction and 
the corresponding Doppler angles (i.e., °−= 0~90θ ) are in good agreement with the 
actual values. Overall, the k-space estimator outperforms the 1-D estimator in terms of 
both the estimation bias and the standard deviation, demonstrating that averaging 
across axial spatial frequencies is effective in reducing the estimation error.  

 

 

Fig. 3.3. Laminar-flow simulation results, shown in the same format as Fig. 3.2. 

3.2.3  Spatial Velocity Gradients 

The preceding simulations assumed constant flows within the selected kernel and 
did not include spatial velocity gradients. In practice, the presence of velocity 
gradients degrades the accuracy of the bandwidth estimation [40], [41]. To evaluate 
such effects on the proposed k-space estimator, a laminar flow )(ru  with a parabolic 

profile was simulated using 
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where R  is the vessel radius, r  is the radial distance relative to the vessel center, 
and maxu  is the maximum flow velocity. The vessel was surrounded by stationary 

clutter, and the intensity ratio between the flow and clutter signals was set to unity. 
Parameter values of mm 0.31 =R , mm/s 30 max =u , and θ  from –90° to 40° were 

used. The kernel size was 8λ×10λ, making its lateral size roughly equal to the vessel 
radius when °= 0θ . Other simulation conditions were identical to those for the 
constant flows. To minimize the effects of velocity gradients, the peak frequency was 
estimated instead of the mean frequency [54]. The estimation results are shown in Fig. 
3.3 using the same display format as in Fig. 3.2. The estimation errors are slightly 
higher for laminar flows than for constant flows. Note that in Fig. 3.3(b), since the 
kernel includes a large portion of the vessel, the axial velocities are underestimated 
relative to their corresponding maximum axial velocities. The k-space estimator is still 
better than the 1-D estimator, with the simulation results showing that applying the 
k-space estimator is feasible in the presence of velocity gradients. 

 

Fig. 3.4. Estimation of flow velocity profile using the k-space (thin solid line) estimator. The thick solid 

line is the actual profile. The Doppler angle is –30° and the kernel size is 2λ×5λ. The error bars represent 

± one standard deviation relative to the mean. 

The use of a large kernel improves the lateral velocity estimation because it is 
more susceptible to the observation window than the axial velocity estimation. If a 
vessel is smaller than the required kernel, the precise flow profile cannot be obtained. 
To account for this problem, a larger kernel is used firstly to determine the Doppler 
angle, from which a smaller kernel can be used to estimate the axial velocity 
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component and in turn, the velocity vector. This is demonstrated in Fig. 3.4, where a 
laminar flow with °−= 30θ  was investigated using the k-space estimator (thin solid 
line). A 2λ×5λ kernel was used to estimate the axial velocity component. Ten 
realizations were generated. Since the kernel contains larger velocity gradients for 
smaller velocities than those for larger velocities, so the estimated profile is slightly 
broadened. Also note that the estimation variance is larger than that shown in Fig. 
3.3(b) because a smaller kernel was used in this case. It is evident that this two-step 
vector velocity estimation method allows accurate estimation of the velocity profile. 

3.3  Experimental Results−Constant Flows  

The principle of the k-space vector velocity estimator is derived assuming a 
constant velocity. Thus, a constant-flow experiment was designed to meet this 
requirement. To emulate a 2-D constant flow, a speckle phantom was placed in a 
water tank and interrogated by a tilted, scanned transducer. Fig. 3.5 explains how 
scanning a tilted transducer laterally is equivalent to moving a phantom in two 
dimensions. When the transducer is moved from right to left with a tilt angle of ψ , 
the equivalent axial velocity component is ψcosscanu  toward the transducer, and the 

equivalent relative lateral velocity between the transducer and the phantom is 
ψsinscanu . In this way, 2-D constant flows were emulated by varying the scan speed 

and the tilt angle. Note that the tilt angle of the transducer rather than the Doppler 
angle was estimated. 

 

 

 

 

 

 

Fig. 3.5. The effect of scanning a tilted transducer. 
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Fig. 3.6. Constant-flow experimental results obtained by scanning a tilted transducer at 40 mm/s. (a) 

Estimated relu . (b) Estimated axial velocities. (c) Estimated tilt angles. The solid and dashed lines 

correspond to the k-space and 1-D vector velocity estimators, respectively. The dotted lines are the actual 

values. The error bars represent ± one standard deviation relative to the mean. 

Scan speeds of 40 and 50 mm/s were investigated. For each scan speed, the 
phantom data were collected at tilt angles from 0° to 60° in increments of 10°. An 
8λ×10λ kernel was selected around the focus. A –12-dB bandwidth threshold was 
used, γ  was set to 0.33, and 11 axial spatial frequencies were employed in the 

k-space estimator. Figs. 3.6 and 3.7 show the estimation results when the transducer 
was scanned at 40 and 50 mm/s, respectively. Each figure includes estimations of the 
relative lateral velocities (Figs. 3.6(a) and 3.7(a)), the axial velocities (Figs. 3.6(b) and 
3.7(b)), and the corresponding tilt angles (Figs. 3.6(c) and 3.7(c)). The solid and 
dashed lines are the results for the k-space and 1-D estimators, respectively, and the 
dotted lines are the actual values. Ten independent experiments were performed to 
produce mean and standard deviation values. Consistent with the simulation results, 
the axial velocity estimation is more accurate than the relative lateral velocity 

(a) (b)

(c)
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estimation. Furthermore, smaller relative lateral velocities are overestimated. The 
estimation errors in the experimental results are, however, larger than those in the 
simulations, especially for the 1-D estimator. This is because the presence of large 
spectral fluctuations in the experimental data makes it difficult to estimate the 
bandwidth correctly. This is partly attributable to the depth of field of the transducer 
being too small and lacking uniformity. As a result, when only the axial velocity 
component is present, the echoes of two adjacent scan lines are no longer the delayed 
and scaled versions of each other, leading to additional spectral variation. Another 
reason is that during data acquisition, the motor speed is not constant, which also 
results in spectral fluctuation. Although the two above factors affect the accuracy of 
the velocity estimation, the k-space estimator is still more robust and is more 
consistent with the actual values than the 1-D estimator. Note that unlike the Doppler 
angle estimation in the simulations, underestimation occurs at larger tilt angles where 
the relative lateral velocities are overestimated. 

 

 

Fig. 3.7. Constant-flow experimental results obtained by scanning a tilted transducer at 50 mm/s, shown 

in the same format as Fig. 3.6. 

(a) (b) 

(c)
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Fig. 3.8. B-mode (panel (a)) and color Doppler images (panels (b)−(e)) of the constant flow phantom. 

The actual axial and lateral velocities are 6.9 (toward the transducer) and 19.4 mm/s (in the opposite of 

the scanning direction), respectively. Panel (b) shows the true velocity vector (20.6 mm/s). Panel (c) 

corresponds to the conventional 1-D autocorrelator. Panel (d) corresponds to the 1-D estimator without 

considering the swept-scan effect; panel (e) corresponds to the k-space estimator. 

(b) (c)

(e)(d) 

(a)
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The advantage of the k-space estimator is further demonstrated in Fig. 3.8, in 
which color Doppler images (panels (b)−(e)) with different velocity estimation 
methods were compared at a scan speed of 40 mm/s and a tilt angle of 10°. In this 
case, the axial velocity was 6.9 mm/s toward the transducer, whereas the emulated 
lateral velocity of the phantom was 19.4 mm/s assuming the transducer speed was 20 
mm/s. This yields a velocity vector of 20.6 mm/s. Panel (a) shows the B-mode image. 
Panel (b) shows the true velocity vector result. Panel (c) shows the result of the 
conventional 1-D autocorrelation-based axial velocity estimation method [3]. Panel (d) 
corresponds to the 1-D estimator without considering the swept-scan effect; panel (e) 
corresponds to the k-space estimator. All color Doppler images were post-processed by 
employing proper thresholding and the median filter. As shown in Fig. 3.8, the 
conventional 1-D autocorrelation method could only detect the axial velocity 
component, and the 1-D estimator ignoring the swept-scan effect produced a large 
bias. Note that the velocity shown in this figure was limited within ±30 mm/s, and the 
actual estimation results for the 1-D estimator were larger than those displayed. The 
k-space estimator provided the accurate velocity vector information though the 
estimation variance was slightly larger than that in panel (c). 

3.4  Discussion and Concluding Remarks 

In this chapter, based on the k-space modeling technique introduced in Chapter 2, 
we proposed an efficient vector velocity estimator that combines the velocity 
estimates within several axial spatial frequencies. The experimental results 
demonstrated that the k-space velocity estimator can correct angle estimation bias 
caused by the swept scanning, and provide more accurate vector velocity estimation 
than conventional narrowband velocity estimation methods. 

As shown in Section 3.2.1, the lateral and axial kernel sizes are chosen according 
to the maximum detectable lateral (in the scanning direction) and axial velocity 
components, respectively. Although the determination of the kernel size in a swept 
scan is based on the PSF, it is conceptually identical to the number of firings and the 
range gate in a step scan. In the later case, the number of firings has to be large 
enough so that the observation time is longer than the lateral transit time [40], whereas 
the range gate length is determined to assure that the Doppler bandwidth is governed 
by the lateral transit time rather than the gate length [40]. Note that for the 
conventional spectral-broadening-based methods in a step scan, due to its narrowband 
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characteristics, the pulse length that determines the axial length of the sample volume 
is required to be sufficiently long to provide accurate velocity estimation at the center 
frequency. In comparison, since the k-space velocity estimator is a wideband 
technique, the pulse length has less effects on the velocity estimation. 

Simulation and experimental results for the proposed k-space velocity estimator 
showed that axial velocity estimation is more robust than lateral velocity estimation. 
One of the main reasons is that the lateral velocity resolution is lower than the axial 
velocity resolution by a factor of 6num =γf (see Section 2.2.1). Other reasons 

include the mean frequency estimation being less sensitive to spectral variation and, 
most importantly, less influenced by the observation window. As indicated in Figs. 
3.2(a) and 3.3(a), an 8λ×10λ kernel is sufficient for accurate lateral velocity 
estimation in the direction opposite to the scanning direction. However, such a kernel 
is too small for lateral velocities in the scanning direction even though the estimation 
variance in this case is greatly reduced. Note that the aforementioned situation is 
unrelated to the scan speed. Slowing down the transducer simply improves the lateral 
velocity resolution (Eq. (2.13)) and is irrelevant to the overestimation of the lateral 
velocity in the scanning direction. This problem can be solved by increasing the 
kernel size or detecting the lateral velocity in the next frame. However, these two 
methods cannot be applied to flows exhibiting spatial or temporal variations. An 
alternative method is to predict the truncated region outside the selected kernel using 
autoregressive modeling [41]. In this case, since the estimation variance is not large, 
1-D rather than 2-D autoregressive prediction is sufficient to obtain reliable estimates. 

In the experiment, the transducer was tilted and scanned laterally to emulate 2-D 
motion of the speckle phantom. The results indicated that the use of a tilted transducer 
for flow measurements using the swept-scan technique might result in poor estimation 
of the velocity vector even if the tilt angle is small. For example, for a scan speed of 
20 mm/s and a tilt angle of 10°, there is a difference of 3.5 mm/s between the actual 
and estimated axial velocities, which is larger than the axial velocity resolution of 
1.25 mm/s. Hence, especially for slow flows, accurate velocity measurement has to 
take this effect into account. Other experimental factors affecting the accuracy of the 
vector velocity estimation include the limited depth of field and the instability of the 
scanning motor, as discussed in Section 3.3. Both factors lead to spectral variation and 
degrade the velocity estimation especially when the spectral bandwidth is small.  

Finally, although the analyses and the estimation results presented in this chapter 
were performed at the focal range of the transducer, they are also valid in the 
non-focal region. In this case, an additional quadratic phase curvature – equal to the 
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difference between the phase curvature at the focal range and the range of interest – 
has to be imposed on the aperture function in (2.6). Thus, if the scan speed is much 
smaller than the sound velocity, the lateral spatial spectrum at the non-focal range is 
still an even function and the axial velocity estimation is not affected. For lateral 
velocity estimation, the proportionality between the relative lateral velocity and the 
lateral spatial spectral bandwidth still holds outside the focus. However, the scaling 
factor γ  should be set dynamically along the range. Therefore, a lookup table for γ  

is required to perform vector velocity estimation on the entire image. 
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Chapter 4   Experimental Results  

In this chapter, the efficacy of the proposed k-space vector velocity estimator in a 
swept-scan system presented in Chapter 3 was further evaluated with both in vitro and 
in vivo experiments. In both experiments, the kernel size used for velocity estimation 
was 8λ×10λ. The bandwidth threshold was –12 dB and γ  was 0.33. For all velocity 

results shown here, a negative lateral velocity represents movement away from the 
scanning direction whereas a negative axial velocity represents movement toward the 
transducer. 

4.1  In Vitro Results 

 

 

 

 

 

Fig. 4.1. The in vitro flow experimental setup. 

In vitro experiments with blood-mimicking fluid were conducted using the setup 
illustrated in Fig. 4.1. A needle with a diameter of 1.5 mm connected to a tube was 
embedded inside a speckle phantom as a flow pathway. A pump (Cole-Palmer, Vernon 
Hills, IL) was used to produce flow velocities between 15 and 30 mm/s. As indicated 
in Fig. 4.1, the transducer was scanned from right to left at 20 mm/s, and the flow 
direction was toward it. Six Doppler angles of 29°, 45.2°, 59.2°, 70.4°, 82.6°, and 90° 
were measured. Only the flow data acquired around the focus were used to estimate 
the Doppler angle. At each angle, five different realizations were generated. As an 
example, a swept-scanned image containing a flow with a Doppler angle of 59.2° is 
displayed with a 40-dB dynamic range in Fig. 4.2(a). Fig. 4.2(b) shows the k-space 
representation of the kernel indicated by a white box in Fig. 4.2(a). Eleven estimates 
of the axial velocity component (dashed line) and the lateral velocity component 

x 
y z 
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(solid line) corresponding to 11 different axial spatial frequencies are shown in Fig. 
4.2(c), where an axial spatial frequency index of six represents the center axial spatial 
frequency.  

 

 

 

Fig. 4.2. In vitro flow experimental results. (a) A 40-dB swept-scanned image containing a flow at an 

angle of 59.2°. The white box indicates the selected kernel. (b) The k-space representation of the selected 

kernel displayed with a 20-dB dynamic range. (c) The estimates of the axial (dashed line) and lateral 

(solid line) velocity components as functions of zf . 

Fig. 4.3 shows the estimated Doppler angles using the 1-D estimator (dashed line) 
and the k-space estimator (heavy solid line). As a comparison, the result for the 
conventional spectral-broadening-based method (i.e., the 1-D estimator without 
considering the swept-scan effect) is shown as a light solid line. The corresponding 
mean and standard deviation values are listed in Table 4.1. The k-space estimator had 
an average angle estimation bias of 2.6° and standard deviations from 2.2° to 8.2°, 

(a) (b)

(c)
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whereas the 1-D estimator had an average angle estimation bias of 3.4° and standard 
deviations from 5.8° to 13.3°. When the swept-scan effect was ignored, the average 
angle estimation bias became 15° and the standard deviations were from 2.7° to 6.6°. 
These experimental results demonstrate that a wide range of Doppler angles can be 
correctly estimated using the k-space estimator. 

 

Fig. 4.3. Flow experimental results. Doppler angles are estimated using the 1-D estimator (dashed line) 

and the k-space estimator (heavy solid line). As a comparison, the light solid line represents the 1-D 

estimator ignoring the swept-scan effect (denoted as 1-D (WC)). The dotted line shows the actual 

Doppler angles. 

Table 4.1. Doppler angle estimations on a flow phantom using the 1-D estimator, the k-space 

estimator, and the 1-D estimator ignoring the swept-scan effect (mean ± one standard deviation) 

Doppler angle (°) 1-D estimator 

(without correction) 

1-D estimator k-space estimator 

29.0 58.7 ± 4.9 29.8 ± 13.3 30.7 ± 8.2 

45.2 72.6 ± 2.9 46.0 ± 10.0 45.6 ± 7.5 

59.2 73.7 ± 6.6 61.6 ± 13.1 63.0 ± 2.2 

70.4 82.2 ± 2.7 75.4 ± 6.7 72.2 ± 3.3 

82.6 84.7 ± 2.8 78.2 ± 9.5 79.0 ± 4.6 

90.0 85.8 ± 3.9 83.0 ± 5.8 85.6 ± 4.0 
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4.2  In Vivo Results 

To test the performance of the k-space velocity estimator, in vivo flow 
measurements on mouse tails were performed. The mice were properly anesthetized 
and a side of the tail containing a vein was scanned. The scan speed in this experiment 
was 10 mm/s (PRI = 100 μs and Δx = 1 μm). Fig. 4.4(a) shows one of the B-mode 
images over a 50-dB dynamic range, from which a vessel is clearly visible. As an 
initial investigation, the color Doppler image using the 1-D autocorrelator (see 
Section 1.1.1) with proper post processing is displayed in Fig. 4.4(b). Every pixel in 
this image was formed by using 16 successive scan lines and a 4λ range gate, and no 
angle correction was done (thus, only the axial velocity components were detected). 
In addition, a Chebyshev type II, 8th-order IIR high-pass filter was employed as a 
wall filter. This wall filter was applied to the whole data set before performing the 
velocity estimation. As indicated in Fig. 4.4(b), the axial velocity components in the 
vessel were around 10 mm/s. By consecutively scanning the same region, the vessel 
boundary was detected from the consecutive B-mode images and the measured 
Doppler angle was around 55°. 

The velocities and angles were individually estimated for four different kernels 
indicated as four color boxes in Fig. 4.4(a). The white, blue and red boxes correspond 
to the flow regions with the increasing range, whereas the black box corresponds to 
the tissue. Different from the in vitro measurements, the vessel size in this case is 
smaller than the kernel size. To remove the clutter signals, we used a 2-D, IIR 
high-pass filter with the same cut-off lateral spatial frequency along the axial spatial 
frequency. The cut-off frequency was chosen empirically according to spectra of 
stationary tissues. The ability of this 2-D wall filter in clutter rejection is demonstrated 
in Fig. 4.5. Fig. 4.5(a) shows the original white color kernel (left) and its k-space 
representation (right). Fig. 4.5(b) shows the results after applying an 8th-order 
Chebyshev type II, 2-D IIR filter. It can be seen that the signals outside the vessel are 
almost suppressed. Fig. 4.5(c) shows the results of the rejected clutter signals. The 
signals with lower frequencies are still present in the vessel. 
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Fig. 4.4. An in vivo flow measurement in a mouse tail (Doppler angle ~ 55°). (a) B-mode image 

(displayed over a 50-dB dynamic range). (b) Color Doppler image (in units of mm/s) using the 1-D 

autocorrelator. Note that angle correction was not used in panel (b). 

 

(a)

(b)
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Fig. 4.5. Results of the 2-D wall filter applied to the white box in Fig. 4.4(a). B-mode images (left panels) 

and the corresponding k-space representations (right panels) (a) before and (b) after the wall filtering are 

shown. The results for the rejected clutter signals are shown in panel (c). All images are displayed over a 

30-dB dynamic range. Note that the red line shown in panel (b) represents the estimated mean lateral 

spatial frequencies corresponding to the axial velocity. 

Fig. 4.6 specifically illustrates the lateral spatial spectrum at the center axial 
spatial frequency before (light solid line) and after the wall filtering (heavy solid line). 
Note that the horizontal axis represents the equivalent axial velocity. It is observed 

B-mode K-space 

(a) 

(b) 

(c) 
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that though a slight overlap is present between the flow and clutter signals, the 
frequencies with larger intensities for the flow signals still can be identified. The 
estimated axial (dashed line) and lateral (solid line) velocities corresponding to 9 
different axial spatial frequencies are shown in Fig. 4.7, where the circles represent 
the results using the 1-D estimator. By averaging 9 estimates, the estimated axial and 
lateral velocities for the k-space estimator (dotted lines) were −11.1 mm/s and −15.9 
mm/s, respectively. This yields a Doppler angle of 55.2°, consistent with the actual 
Doppler angle.  

 

Fig. 4.6. The lateral spatial spectrum at the center axial spatial frequency before (light solid line) and after 

the wall filtering (heavy solid line) for the white box shown in Fig. 4.4(a). Note that the horizontal axis 

represents the equivalent axial velocity.  

 

Fig. 4.7. The result of the k-space velocity estimator for the white box in Fig. 4.4(a). The estimated axial 

(dashed line) and lateral velocities (solid line) corresponding to 9 different axial spatial frequencies are 

shown. The circles represent the results of the 1-D estimator, and the dotted lines are the results of the 

k-space estimator. 
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For all four color boxes shown in Fig. 4.4(a), the estimation results using the 1-D 
and k-space estimators are compared in Table 4.2. Note that the wall filter was not 
applied to the black box (i.e., the tissue region). It is shown that the k-space estimator 
can accurately estimate the Doppler angles for the white and blue boxes. For the red 
box, however, the Doppler angle is overestimated significantly. This is mainly 
attributed to two facts: (i) the insufficient SNR in this region increases the estimate 
variance, and (ii) the bandwidth becomes wider at the non-focal range. To 
demonstrate the robustness of the k-space velocity estimator, five successive 
measurements for the white box were made and the results are listed in Table 4.3. The 
estimated angle for the k-space estimator was 55.4°±8.3° (mean ± standard deviation), 
better than 48.7°±18.8° for the 1-D estimator.  

 

Table 4.2. Velocity and Doppler angle estimations for the four boxes shown in Fig. 4.4(a) using 

the 1-D and k-space vector velocity estimators 

 White box 

(blood) 

Black box 

(tissue) 

Blue box 

(blood) 

Red box 

(blood) 

Axial velocity (mm/s) −11.1 (−11.2) 0.1 (0.1) −6.4 (−6.2) −7 (−7.6) 

Lateral velocity (mm/s) −15.9 (−17.1) −0.4 (3.6) −9.1(−2.8) −34 (−36) 

Doppler angle (°) 55.2 (56.8) N/A 54.6 (23.8) 78.4 (78) 
*The actual Doppler angle is around 55∘ 
**The values in the brackets represent the results of the 1-D estimator 

 

Table 4.3. Velocity and Doppler angle estimations for the white box shown in Fig. 4.4(a) with 

five different realizations using the 1-D and k-space vector velocity estimators 

 Axial velocity 

(mm/s) 

Lateral velocity   

(mm/s) 

Doppler angle 

(°) 

 −8.90 (−9.4) −19.6 (−18.5) 65.5 (63.2) 

 −10.2 (−10.3) −9.4 (−3.1) 42.5 (17.0) 

 −11.1 (−11.2) −15.9 (−17.1) 55.2 (56.8) 

 −10.8 (−10.8) −17.0 (−18.7) 57.9 (60.0) 

 −10.5 (−10.1) −15.5 (−10.6) 55.9 (46.3) 

Mean  −10.3 (−10.4) −15.5 (−13.6) 55.4 (48.7) 

Standard deviation 0.9 (0.7) 3.8 (6.7) 8.30 (18.8) 

*The actual Doppler angle is around 55° 
**The values in the brackets represent the results of the 1-D estimator 
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The k-space estimator was further investigated at a larger Doppler angle where 
the conventional Doppler-based technique produces a large estimate bias. Fig. 4.8 
shows such a case in which the Doppler angle is approximately 75°. Figs. 4.8(a) and 
(b) show the B-mode and color Doppler images, respectively. It is observed that the 
estimated velocities in the vessel are generally below 10 mm/s away from the 
transducer. Using the same display format as in Fig. 4.5, Fig. 4.9 depicts the resulting 
filtered B-mode images and k-space representations for the white box shown in Fig. 
4.8(a). The filtered lateral spatial spectrum (heavy solid line) at the center axial spatial 
frequency is shown in Fig. 4.10, and compared with the one for the stationary tissue 
(dashed line) indicated as the black box in Fig. 4.8(a). The spectral overlap in this 
case is much more significant than that in the previous case. 

 

Fig. 4.8. An in vivo measurement in a mouse tail (Doppler angle ~ 75°). (a) B-mode image (displayed 

over 50-dB dynamic range). (b) Color Doppler image (in units of mm/s) using the 1-D autocorrelator. 

Note that angle correction was not used in panel (b). 

(a) 

(b) 
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Fig. 4.9. Results of the 2-D wall filter applied to the white box in Fig. 4.8(a). B-mode images (left panels) 

and the corresponding k-space representations (right panels) (a) before and (b) after the wall filtering are 

shown. The results for the rejected clutter signals are shown in panel (c). All images are displayed over a 

30-dB dynamic range. Note that the red line shown in panel (b) represents the estimated mean lateral 

spatial frequencies corresponding to the axial velocity. 

B-mode K-space 

(a) 

(b) 

(c) 
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Fig. 4.10. The lateral spatial spectrum at the center axial spatial frequency before (light solid line) and 

after the wall filtering (heavy solid line) for the white box shown in Fig. 4.8(a). For comparison, the 

dotted line corresponds to the black box (i.e., the tissue region) shown in Fig. 4.8(a) without wall 

filtering. 

 

Fig. 4.11. The result of the k-space estimator for the white box in Fig. 4.8(a). The estimated axial (dashed 

line) and lateral velocities (solid line) corresponding to 9 different axial spatial frequencies are shown. 

The estimated axial and lateral velocities as a function of the axial spatial 
frequency for the white box are shown in Fig. 4.11. The estimated axial velocity, 
lateral velocity, and Doppler angle for the k-space estimator were 4.5 mm/s, −15.2 
mm/s, and 73.5°, respectively. With five successive measurements at the white box, 
Table 4.4 summaries the estimation results using the 1-D and k-space estimators. The 
estimated angle for the k-space estimator was 69.6°±3.7°, compared to 71.5°±4.7° for 
the 1-D estimator. Due to presence of the severe spectral overlap, the estimated axial 
and lateral velocities are over- and under-estimated, respectively, which causes an 
underestimation in Doppler angle estimation. 
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Table 4.4. Velocity and Doppler angle estimations for the white box shown in Fig. 4.8(a) with 

five different realizations using the 1-D and k-space vector velocity estimators 

 Axial velocity 

(mm/s) 

Lateral velocity   

(mm/s) 

Doppler angle 

(°) 

 4.5 (4.4) −15.2 (−16.9) 73.5 (75.4) 

 5.4 (5.8) −12.8 (−13.7) 67.1 (67.3) 

 5.4 (5.5) −11.6 (−12.0) 64.9 (65.5) 

 4.9 (5.3) −16.0 (−19.8) 72.9 (75.0) 

 5.6 (5.0) −14.8 (−17.9) 69.4 (74.4) 

Mean  5.2 (5.2) −14.1 (−16.1) 69.6 (71.5) 

Standard deviation 0.5 (0.5) 1.8 (3.2) 3.7 (4.7) 
*The actual Doppler angle is around 75° 
**The values in the brackets represent the results of the 1-D estimator 

4.3  Discussion and Concluding Remarks 

In this chapter, both in vitro and in vivo experiments were conducted to 
investigate the feasibility of the proposed k-space vector velocity estimator. These 
experimental results demonstrated that the k-space velocity estimator can correct for 
the angle estimation bias caused by the swept scan. Furthermore, compared to the 1-D 
estimator using only the center axial spatial frequency, the k-space estimator can 
efficiently reduce velocity estimation errors. 

In the in vivo experiments, the scan speed was set to 10 mm/s according to the 
analyses in Section 2.2.3. In Fig. 2.8, at the scan speed equal to 10 mm/s, a critical 
angle of 55° corresponds to a detectable velocity vector of around 8 mm/s, which 
allows the accurate velocity estimation in the first in vivo experiment. However, a 
critical angle of 75° at this scan speed yields an extremely large minimally detectable 
velocity and therefore, the spectral overlap is present inevitably and causes an slight 
angle estimation bias in the second in vivo experiment. In this case, decreasing the 
scan speed can reduce the spectral overlap and improve the angle estimation if the 
motor control is not a problem. However, our system currently can only provide the 
stable motor control at the scan speed above 10 mm/s and limits our further 
investigations below this scan speed. 

The in vivo results demonstrated the robustness of the k-space estimator even in 
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the presence of the clutter signals. It was shown that employing a 2-D wall filter is 
capable of removing the clutter signals effectively. The 2-D wall filter applied here 
had the cut-off lateral spatial frequencies independent of the axial spatial frequency. 
Nonetheless, if the spectral overlap between the flow and clutter signals becomes 
non-negligible, a 2-D wall filter with the variable cut-off lateral spatial frequencies 
increasing with the axial spatial frequency will be desirable. In this case, since the 
filter is non-separable in rectangular coordinates, the required number of 
computations is more than that in the case of a filter with a fixed cut-off frequency. 

The color Doppler images shown in Figs. 4.4(b) and 4.8(b) were the results with 
the wall filter being applied to the whole scanned data set. This is different from the 
conventional step-scan method in which the filter is simply applied to the data 
obtained with a few number of firings. As mentioned in Section 1.2.2, the transient 
response of IIR filters affects the first few data and therefore degrades the 
performance of velocity estimation in a step scan. In contrast, the transient response is 
absent in a swept scan except at the edges of the scanned image. To investigate the 
effects of the transient response on velocity estimation in a step scan, the wall filter 
with zero initialization was individually applied to the data set spanning 16 scan lines. 
Note that this is not identical to the step scan but helps the understanding of such a 
transient effect. The results are shown in Fig. 4.12(b) and compared to the case of the 
swept scan shown in Fig. 4.12(a) (note that Fig. 4.12(a) is identical to Fig. 4.4(b)). It 
is shown the transient response results in several false flows that are not present in the 
B-mode image (see Fig. 4.4(a)) and also increases the estimation variance. The results 
demonstrate the advantage of the wall filter applied in a swept scan. 

Finally, the in vivo results also indicated that the performance of the k-space 
estimator degrades as the SNR decreases. The main reason is that the maximum 
frequency determined by the threshold method is susceptible to the noise. A more 
robust maximum frequency estimation method, such as integrated power spectrum 
methods, can be used to solve this problem [55]. However, it is not clear whether this 
method is more affected by the presence of the clutter signals than the threshold 
method. Another method is to increase the SNR of the system using coded excitation 
[56]. We will examine the possibility of velocity estimation with this technique in 
Chapter 5. 
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Fig. 4.12. Comparison of the color Doppler images by applying the wall filter to (a) the whole data set 

(spanning 4000 scan lines) and (b) the partial data set (16 scan lines). Note that panel (a) is identical to 

Fig. 4.4(b). 

 

(a) 

(b) 
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Chapter 5   Discussion 

5.1  K-space Estimation in Swept-scan vs. Spectral- 

broadening-based Estimation in Step-scan 

In this section, the k-space vector velocity estimator in a swept scan is compared 
to the conventional spectral-broadening-based techniques in a step scan. To obtain the 
accurate lateral velocity estimation, both methods require a sufficiently long 
observation window. Given the same PRI and axial window length (i.e., the range 
gate), both methods have the same observation time if the number of repeated firings 
(in step scanning) is equal to the number of scan lines (in swept scanning). In Chapter 
3, it was shown that the required kernel size for the k-space estimator is 8λ×10λ. 
Hence, regardless of its improvement in the frame rate, the spatial resolution for the 
k-space estimator is worse than that for the spectral-broadening-based technique in a 
step scan (the lateral spatial resolution is 2λ according to Table 2.1). Nonetheless, the 
k-space estimator is capable of detecting the direction of the lateral velocity, which is 
not possible for the conventional technique in a step scan. 

Before further comparing the performances of both techniques, the required 
number of repeated firings for the conventional spectral-broadening-based technique 
is evaluated. Instead of using the transit time [40], a spatial-domain method that is 
similar to the analysis on the kernel size in a swept scan is introduced. This is depicted 
in Fig. 5.1, where a moving object in a step scan (panel (a)) can be equivalently 
represented in a swept scan. A 2-D moving object in a step scan can be viewed as an 
axially moving object in a swept scan with a scan speed equal to the lateral velocity 
component of the object (panel (b)). This produces a tilted PSF as shown in panel (c). 
To preserve the −6-dB lateral width of the resulting PSF, the required number of 
firings RN  must satisfy  

numobjR sinPRI)1( fuN λθ ≥− .                                     (5.1) 

Rearrange (5.1) as  
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fN ≥− ,                                        (5.2) 

i.e., the observation time has to be longer than the transit time [35]. RN  increases as 
the lateral object velocity decreases. Once RN  is determined, the required axial 

window size is θcosPRI)1( objR uN − . For instance, according to Table 2.1, in order 

to detect a velocity of 30 mm/s with a Doppler angle larger than 10°, 144 firings with 
an 11λ range gate are required.  

 

 

 

 

 

 

 

 

Fig. 5.1. Illustration of a moving object in a step scan (panel (a)) being represented equivalently in a 

swept scan (panel (b)). The resulting PSF is shown in panel (c). The dashed box indicates the required 

observation window for vector velocity estimation. 

The influence of number of firings on the accuracy of the bandwidth estimation 
was further investigated by single-object simulations. The simulations are identical to 
those used in a swept scan (see Section 3.2.1). Figs. 5.2(a) and (b) show the 
estimated –12-dB Doppler bandwidth as a function of the lateral velocity for different 
combinations of RN  and the range gate length when the velocity vector was fixed at 

30 and 50 mm/s, respectively. The proportionality between the bandwidth and the 
lateral velocity component in a step scan roughly holds for 303R =N  with a 20λ 
range gate, but such large firings are not feasible for a real-time system. 65R <N  is 

insufficient to obtain such a proportional relationship. Different from the results 
obtained using (5.1), 151R =N  is simply adequate to detect lateral velocities higher 

Scan speed = θsinobju

obju  

θ

(a) (b) (c) 

Lateral  

Axial 

Repeated firings 
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than 30 mm/s. 

 

Fig. 5.2. Effects of the number of repeated firings in a step scan on the –12-dB Doppler bandwidth. The 

velocity vector was fixed at (a) 30 mm/s and (b) 50 mm/s. ‘33frgs×20λ’ represents 33 firings with a 20λ 

range gate.  

Simulation results of the velocity estimation for the k-space estimator (right 
column) and the conventional technique in a step scan (left column) are compared in 
Fig. 5.3, which is on the basis that both estimators have the same range gate length 
(10λ) and the observation time (151 firings vs. 8λ lateral kernel spanning 151 scan 
lines). In these simulations, the flow velocity vector was 30 mm/s with a Doppler 
angle ranging from –90° to 0°. Other parameters are the same as those in Section 3.2.2. 
Figs. 5.3(a)−(c) show the estimated lateral velocities, axial velocities, and Doppler 
angles, respectively. For the conventional technique in a step scan, two different 
estimation methods using the center frequency (called the narrowband estimator) and 
15 RF frequencies (called the wideband estimator) are shown. The k-space estimator 
averaged the estimates from 15 axial spatial frequencies. Overall, due to the 
insufficient observation window, the lateral velocities in a step scan are overestimated 

(a) 

(b) 
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and angle estimation errors are significant at smaller angles. Fig. 5.3 demonstrates that, 
under the same observation window with an adequate size, the k-space estimator 

 

 

Fig. 5.3. Comparison of constant−flow simulation results between the step- (left panels) and swept-scan 

(right panels) methods. Panels (a)−(c) correspond to the estimates of lateral velocities, axial velocities, 

and Doppler angles, respectively. For the step-scan method, 151 firings with a 10λ range gate were used. 

For the swept-scan method, the kernel size was 8λ×10λ. For both scanning methods, the dashed lines 

represent the estimates using only the center (axial spatial) frequency, whereas the solid lines are those 

using 15 RF (axial spatial) frequencies. 

Step-scan Swept-scan

(a) 

(b) 

(c) 
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provides a wider range of angles than the conventional technique in a step scan. The 
superiority of the k-space estimator is due to the fact that at a given Doppler angle, 
swept scanning increases the bandwidth and thus decreases the required observation 
window. Employing spatial averaging can effectively increase the observation time 
required for the conventional technique in a step scan [40], but the advantage of 
spatial resolution in a step scan over swept scan is limited. 

5.2  K-space Vector Velocity Estimator Using Coded 

Excitation 

Transmitting a coded signal and compressing received echoes properly can 
improve the SNR and the penetration depth [56]. Compared to conventional pulsed 
excitation with a few cycles, coded signals with large time-bandwidth products have 
longer durations without sacrificing the bandwidths. Therefore, given the same peak 
transmission power, the SNR in a coded excitation system is theoretically improved 
by a factor equal to the time-bandwidth product of the coded signal. The practical 
SNR improvement depends on both the spectral shapes of the code and the 
compression filter [56]. Since the attenuation increases with the operating frequency, 
coded excitation is of particular interest in high-frequency ultrasound. In this section, 
effects of the coded signal on the k-space velocity estimator are examined by 
simulations.  

A linear frequency modulated waveform (also known as a chirp) was used. It has 
the property that the instantaneous frequency varies linearly with time. The PSFs and 
the corresponding k-space representations in a swept-scanned chirp excitation system 
are illustrated in Fig. 5.4. In this figure, the chirp had a duration of 2.5μs within which 
the frequency increased from 20 to 60 MHz. A Chebyshev-shaped matched filter 
capable of suppressing sidelobes to a –55dB level was used as a compression filter. 
Other simulation parameters were the same as those listed in Table 2.1. Figs. 5.4(a) 
and (b) show the results of the stationary object without and with compression, 
respectively, whereas (c) and (d) show those of the object moving with a velocity of 
30 mm/s and a Doppler angle of –30°. It is found that the results with compression are 
similar to those with pulsed excitation shown in Fig. 2.4. Moreover, the compression 
filter does not affect the k-space representation, except that the axial spatial bandwidth 
is slightly reduced due to the shaping window applied in the matched filter. 
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Fig. 5.4. PSFs (left panels) and their k-space representations (right panels) using chirped excitation. 

Panels (a) and (b) correspond to the stationary object without and with compression, respectively. Panels 

(c) and (d) correspond to the object moving with a velocity of 30 mm/s and a Doppler angle of –30° 

without and with compression, respectively. 

(a) 

(b) 

(c) 

(d) 
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Fig. 5.5. Constant-flow simulation results of the k-space velocity estimator using chirp excitation. The 

velocity estimation with (solid lines) and without (dashed lines) pulse compression are compared. The 

flow velocity was fixed at 30 mm/s and the Doppler angle varied from –90° to 0°. Panels (a)−(c) 

correspond to the estimates of relu , axial velocities, and Doppler angles, respectively.  

(a) 

(b) 

(c) 
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To further investigate the feasibility of the k-space vector velocity estimator 
using coded excitation, constant flows with a velocity of 30 mm/s and Doppler angles 
ranging from –90° to 0° were simulated. Except for the transmitted signal, the 
simulation conditions were identical to those in Section 3.2.2. The parameters for the 
k-space estimator used here (including the kernel size, the bandwidth threshold, the 
scaling factor, and the number of axial spatial frequencies) were also identical to those 
in Section 3.2.2. The velocity estimation results using the k-space estimator are shown 
in Fig. 5.5. Figs. 5.5(a)−(c) show the estimated lateral velocities, axial velocities, and 
Doppler angles, respectively. The estimation results before (dashed lines) and after 
(solid lines) compression are compared to each other. The dotted lines represent the 
actual values. Ten realizations were generated to produce the mean and standard 
deviation values. Compared to the case with pulsed excitation (see Fig. 3.2), it is 
shown that the k-space velocity estimator also performs well using coded excitation 
with compression. Furthermore, although the axial kernel size (10λ) is less than the 
chirp length (50λ), the performance of velocity estimation without compression does 
not degrade significantly. This is because the kernel mainly truncates the upper and 
lower axial spatial frequencies, and has less effects around the center axial spatial 
frequencies used for averaging. Therefore, if the kernel is large enough to maintain 
the center axial spatial frequency, the k-space velocity estimator can also be 
performed on the uncompressed flow data. 

5.3  Applying K-space Estimator to Electronic-scanning 

Array Systems 

Although the proposed k-space velocity estimator is mainly developed in a 
mechanical swept-scan system, applying it to a transducer array with electronic 
scanning is straightforward. In this case, since the elements accounting for 
transmission and reception have no relative displacement during the pulse-echo round 
trip time (i.e., 0=d ), the term 1=dfj xe π  in (2.6) and the k-space representations 
described in Section 2.1 are unchanged, except that the scan speed scanu  is replaced 
by PRIxΔ . A potential advantage of electronic scanning over mechanical scanning 

is that the velocity estimation is free from the errors caused by the variations in the 
motor speed. 

The type of the array has a great impact on the performance of the k-space 
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estimator. In a phased-array system, the beam steering capability allows the scan line 
increment (i.e., xΔ ) to be much less than a wavelength. In a linear-array system, on 
the other hand, xΔ  is typically on the order of the wavelength. Hence, for a given 
PRI, flow signals in a linear-array system are more decorrelated. Moreover, the 
number of scan lines within the kernel is much less than that in a phased-array system. 
Large xΔ  may also cause the spectral aliasing and limit the maximum detectable 
velocity (see Section 2.2.2). These factors lead to the conclusion that the k-space 
estimator should perform better in a phased-array system than in a linear-array 
system. 

5.4  Power Doppler in Swept-scan 

To provide accurate velocity vector estimation in a swept scan, the kernel size 
required for the k-space estimator is shown to be as large as 8λ×10λ (~ 0.3 mm×0.4 
mm). For measuring microvascular structures (e.g., tumor angiogenesis), however, 
such a kernel may include a variety of velocity vectors, which makes the k-space 
estimator inadequate for this application. In this case, since the vessels are distributed 
closely and non-uniformly, techniques capable of providing the high sensitivity rather 
than flow direction information are demanded. In other words, echoes from flows are 
usually weak enough so that quantitative velocity estimation is relatively difficult. To 
increase the sensitivity of flow detection, Power Doppler in which spectral energy of 
flow signals is displayed is often used to provide qualitative visualization of flow 
patterns in conventional color Doppler imaging. 

Because the lateral spatial spectrum of flow signals in a swept scan broadens 
linearly with the relative lateral velocity over the scan speed (see (2.9)), the resulting 
spectral energy increases at the same rate when the spectrum is normalized to its 
maximum. Therefore, employing Power Doppler in a swept-scan system has to 
remove the effect of the scanning speed on spectral energy. Note that the 2-D 
spectrum can be utilized in the calculation of spectral energy. In this case, before 
combining the spectral energy of the lateral spatial spectra at different axial spatial 
frequencies, the individual lateral spectral spectra have to be normalized to their 
individual maxima, and the resulting spectral energy has to remove the dependence on 
the axial spatial frequency.  

In order to provide the sufficient spatial resolution, the kernel used for Power 
Doppler must be small enough. As a result, spectral energy may be not strictly 
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proportional to the relative lateral velocity (see Fig. 3.1) and its dependence on the 
scan speed may be overcompensated. Proper correction of the relationship between 
spectral energy and the scan speed according to the kernel size is therefore required to 
provide an appropriate spectral energy map. 
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Chapter 6   Conclusions and Future Works 

In this thesis, effects of the swept-scan technique on vector velocity estimation 
were investigated using a k-space approach. This k-space modeling provided an 
accurate description of 2-D motion in a swept scan. With this technique, it was 
demonstrated that the swept-scan technique introduced an additional spectral 
broadening proportional to the scan speed. Experimental results showed that applying 
the conventional spectral-broadening-based technique to a swept-scan system resulted 
in an estimation bias as well as an increase in estimation variance. 

Based on the k-space modeling, a wideband vector velocity estimation technique 
in a swept scan was proposed. Both simulation and experimental results demonstrated 
that the proposed velocity estimator can not only correct an estimation bias due to the 
swept scan, but also outperform conventional narrowband estimation techniques 
utilizing only the center frequency of the excitation. Furthermore, the proposed 
velocity estimator also performed better than conventional spectral-broadening-based 
techniques applied in a step scan in terms of the frame rate and estimation accuracy. 

Future works will continue in vivo investigations of the performance of the 
proposed vector velocity estimator to the vessels with more clinical values using 
mouse animal models, such as carotid, ascending, renal, abdominal, and major arteries. 
Characteristics of flow pulsation and turbulence within these vessels may have a 
significant impact on the accuracy of bandwidth estimation. In addition, to assess 
these flow velocities with a sufficient SNR, the penetration and system sensitivity 
need to be improved. Therefore, we will also experimentally evaluate the use of coded 
excitation and/or contrast agents in high-frequency flow velocity vector estimation. It 
should be noted that combining coded excitation with contrast agents is advantageous 
for clutter suppression [57]. Another potential technique for clutter reduction with 
contrast agents is pulse inversion Doppler [58]. Both techniques are particularly 
applicable to the detection of slow flow velocities in a swept scan and will be 
investigated. 
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Appendix A Approximation of (2.2) 

The k-space representation in a swept scan described in (2.2) can be rewritten as 
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Let f′x = f′′x − fzd/4zf; (A.1) then becomes  
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If fxd << π for fx corresponding to the nonzero spectrum values, the phase terms in the 
bracket can be approximated as 1±jπfxd. (A.2) can therefore be approximated as  
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Neglecting the term containing d2 in the bracket, (A.3) can be approximated as 
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