
PII: S0301-5629(01)00442-2

● Original Contribution

ELASTIC PROPERTIES OF TENDON MEASURED BY TWO
DIFFERENT APPROACHES

PO-LING KUO,* PAI-CHI LI
† and MENG-LIN LI

†

*Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan; and
†Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

(Received 3 January 2001; in final form 13 July 2001)

Abstract—Elastic properties of tendon were assessed by two different approaches. Six fresh bovine Achilles
tendon specimens were used. The first approach directly measured Young’s modulus along the transverse
direction (Eperpendicular) and the longitudinal direction (Eparallel), using a cyclic compression–relaxation method.
Young’s moduli were derived based on the measured strain and stress values. The ratio ofEparallel: Eperpendicular

at smaller strains was around 4 and decreased to 0.6�1.1 at larger strains. The second approach assumed that
tendons are transversely isotropic. Three observable second-order elastic stiffness constants (c11, c13 and c33)
were obtained by sound speed measurements along various propagation directions. The measured elastic stiffness
constants were also correlated with results from the first approach. It was shown that the transverse isotropy
assumption was valid at small strains. However, a significant discrepancy existed between the two approaches.
The discrepancy was primarily due to viscoelasticity associated with the first approach. (E-mail:
paichi@cc.ee.ntu.edu.tw) © 2001 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Tendon dysfunction is a major issue in rehabilitative
medicine. The primary purpose of rehabilitation is to
restore the mechanical functions of an injured or in-
flamed tendon. To noninvasively and quantitatively mea-
sure mechanical properties of tendon, sonoelastography
has been proposed to monitor tendon functions during
the rehabilitation process (Kuo et al. 1999).

Sonoelastography typically involves externally ap-
plied forces and reconstruction of strain fields. Several
groups have published results in this research area (Ces-
pedes et al. 1993; Emelianov et al. 1995; Gara et al.
1997; Kaisar and Ophir 1997; Kallel et al. 1996, 1997,
1998; Levinson et al. 1995; O’Donnell et al. 1994; Pon-
nekanti et al. 1994, 1995; Skovoroda et al. 1994, 1995;
Sumi et al. 1995; Varghese and Ophir 1997a, 1997b,
1997c, 1998). One possible approach is based on a linear
elasticity model under static deformation with small
loadings. Elastic constants can then be reconstructed by
a two-step inverse problem approach (Kallel and Ber-
trand 1996; Ophir et al. 1997; Skovoroda et al. 1994).

The first step involves estimating the strain fields from
the ultrasound (US) data acquired pre- and postcompres-
sion. The second step is to find the optimal distribution of
elastic modulus, given the estimated strain fields.

We have previously shown that axial components of
the tendon’s transverse strain fields could be measured
by US with a baseband speckle-tracking algorithm. Com-
pared to traditional B-mode imaging, strain imaging may
be a better tool for clinical assessment of tendon disor-
ders (Kuo et al. 1999). Given the strain fields, the next
step is to reconstruct elastic properties of tendon. Be-
cause the strain fields are obtained by a compression
method, knowledge of elastic modulus (i.e., Young’s
modulus) distribution of tendon in compression is cru-
cial. Unlike most biologic soft tissues, however, tendon
possesses a strong axial symmetry with a unidirectional
arrangement of collagen fibers reinforced throughout its
entire thickness. Thus, the isotropic model used in most
elasticity imaging for many other biologic tissues is not
applicable. Instead, a transversely isotropic model used
for materials exhibiting minimally hexagonal symmetry
or maximally axial symmetry may be more feasible
(Levinson 1987; Yoon and Katz 1976). Note that the
transverse isotropy model can be reduced to the isotropy
model if plane strain state can be created along the
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longitudinal axis. In this case, reconstruction of elasticity
properties can be greatly simplified. Thus, validation of
the transverse isotropy assumption is of crucial impor-
tance in elasticity imaging of tendon.

For a transversely isotropic medium, mechanical
properties such as Young’s modulus depend on the angle
between the stress axis and the fiber axis. In addition,
values of Young’s modulus along the longitudinal fiber
axis (i.e., Eparallel) and along the direction perpendicular
to the fiber axis (i.e., Eperpendicular) are both needed to
describe the mechanical properties. Therefore, one main
purpose of this study is to obtain the Young’s modulus
distribution of tendon and correlate it with the transverse
isotropic model. Note that the Young’s modulus is mea-
sured in compression in this paper so that it is in accor-
dance with typical clinical applications of elasticity im-
aging. Also, linear elasticity is assumed. Under these
conditions, the hypothesis that the tendon is transversely
isotropic can be tested and the Young’s modulus can be
estimated based on observable elastic stiffness coeffi-
cients (Hoffmeister et al. 1996b; Levinson 1987). In this
paper, data from both measurement approaches covering
different strain states are correlated and potential sources
of discrepancy are discussed.

THEORY

A brief review of the constitutive equations used in
the transversely isotropic model is described in the fol-
lowing (Hoffmeister et al. 1996b; Levinson 1987; Yoon
and Katz 1976). Given the Cartesian coordinate (x1, x2,
x3) with x3 representing the direction parallel to the fiber
axis, a tendon is isotropic in the (x1, x2) plane (Fig. 1).
Thus, elastic properties of tendon can be described by an
elastic stiffness tensor with hexagonal symmetry. The
Young’s modulus, defined as the ratio of the loading
stress to the corresponding strain, can be derived from
coefficients of the elastic stiffness tensor. Specifically,
Eparallel (i.e., E33) and Eperpendicular (i.e., E11 and E22) can
be written as:

Eparallel � c33 �
c13

2

c11 � c66
(1)

and

Eperpendicular � 2c66�2 �
2c33c66

c11c33 � c13
2 � . (2)

Here, cij represents the elastic stiffness coefficients using
the Voigt notation. Note that the sound velocity parallel
(i.e., Vparallel) and perpendicular (i.e., Vperpendicular) to the
fiber axis can be used to determine c33 and c11. Further-
more, the elastic stiffness coefficient c13 can also be
obtained from the phase velocity of longitudinal waves
(i.e., VL) propagating at any direction other than 0° and
90° in the plane containing the x3 axis. In other words,

c11 � �Vperpendicular
2 , (3)

c33 � �Vparallel
2 , (4)

and

c13 � ���c33 cos2 � � c44 sin2 � ��c11 sin2 � � c44 cos2 � �

� �c11 sin2 � � c33 cos2 � � c44��V L
2 � �2V L

4�1/ 2�

� ��sin ���cos ����1 � c44, (5)

where � is the tendon density and � denotes the angle
relative to the x3 axis. Note that eqn (5) can also be
rewritten as:

VL � ���c11 sin2 � � c33 cos2 � � c44�

� ���c11 � c44�sin2 � � �c33 � c44�cos2 ��2

� 4�c13 � c44�
2 sin2 � cos2 � �1/ 2�1/ 2��2���1/ 2. (6)

MATERIALS AND METHODS

Samples used in this study were from fresh speci-
mens of six bovine deep flexor tendons of the Achilles
group. For each tendon, fat and residual tissue were
carefully removed and the specimens were prepared for
sound velocity measurements following the procedures
described below. First, a cubic specimen was cut using a
custom-made blade holder for measuring sound speeds
parallel and perpendicular to the fiber axis. The blade
holder was designed to keep two microtome blades par-
allel to each other with a separation of about 10.0 mm
(measured by a dial caliper with a minimum scale of 0.02
mm). Typical specimens and the blade holder are illus-
trated in Fig. 2. The specimen was also used for direct
measurements of Young’s modulus along directions par-
allel and perpendicular to the fiber axis. Second, a rhom-

Fig. 1. Definition of coordinates.
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bohedron specimen was obtained using the blade holder
at 30° relative to the longitudinal axis (i.e., the propaga-
tion direction was perpendicular to the surface of the
specimen and 30° relative to the longitudinal axis). Fi-
nally, another two rhombohedron specimens were pre-
pared following similar procedures, except that the cut-
ting angles were 45° and 60° relative to the longitudinal
axis. Therefore, speeds of sound at five different propa-
gating directions (0°, 30°, 45°, 60° and 90° relative to the
longitudinal fiber axis) were measured for each tendon.
For directions perpendicular to the fiber axis, velocities
were measured at both x1 and x2 directions (see Fig. 1).
Note that, in the transverse plane, the tendon shape is
elliptic and the long axis was chosen as x1. Size of the
sample was confirmed using the dial caliper and then the
sample was preserved in a normal saline solution for
future use.

Two ultrasonic transducers were used for sound
velocity measurements in the transmission mode. The
center frequencies of the transmitter and receiver were 5
MHz (Panametrics V310, Waltham, MA) and 3.5 MHz
(Panametrics V383), respectively. Note that sufficient
overlap between the passband of the two transducers was
present, such that accurate velocity estimates can be
obtained. As shown in Fig. 3, the experiment setup had
the receiving transducer attached to a custom-made
acrylic holder. An acrylic enclosure was also used to
hold water between the two transducers. An electronic
balance with a readability of 0.1 g (OHAUS 1P12KS,

Florham Park, NJ) was placed under the acrylic holder to
measure the applied load. The transmitting transducer
was positioned by a computer-controlled, three-axis step
motor system (Q-Sync, Hsin-Chu, Taiwan). Ultrasonic
pulses were generated and received by a commercial
pulser-receiver (Panametrics 5072PR). Settings of the
pulser-receiver were chosen to optimize detection of the
leading edge of the received ultrasonic waveform and
avoid signal saturation.

A tendon sample was first placed on the center of
the receiving transducer and the transmitting transducer
was moved toward the upper surface of the specimen by
the step motor system. To obtain speeds of sound at
different strains, the ultrasonic signal was collected at
three predetermined compression levels. First, the initial
length (i.e., the 0% strain state) was defined as the
distance between the two transducers when the initial
contact between the tendon and the transmitting trans-
ducer occurred. The initial contact was indicated when
reading of the electronic balance started to increase.
Second, the transmitting transducer was advanced by 475
�m, which corresponded to a 4.7% strain. Note that
stiffness of the measuring system (including the trans-
ducers, acrylic holder, and the electronic balance) is
about 4-TPa, which is far larger than that of the tendon.
Thus, deformation of the measuring system can be ig-
nored when the tendon is compressed. Similarly, another
advancement of the transmitting transducer by 475 �m
was defined as the 9.5% strain condition. The three
ultrasonic signals were digitized at a sampling rate of 20
MHz by an A/D converter and stored in a personal
computer for off-line analysis. After the measurements
were completed, the sample was removed without chang-
ing the position of the transducers and water was filled

Fig. 2. Picture of the blade holder and typical specimens.
Specimens with propagating directions (A) 0°, (B) 30°, and (C)
45° relative to the fiber axis; (D) the custom-made blade holder.

Fig. 3. Block diagram of the velocity measurement setup.
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into the acrylic holder between the two transducers.
Another three ultrasonic measurements were made at the
aforementioned three strain conditions by moving up the
transmitting transducer and the acquired data were used
to determine lengths of the sample given the speed of
sound in water. For each sample, two repeated measure-
ments were made at room temperature and data were
acquired within 1 h.

The mass density of tendon samples, defined as
weight divided by volume, was calculated using small
samples removed from the tendons adjacent to the loca-
tion where specimens had been cut. The electronic bal-
ance was used to determine the weight. Each sample was
measured to the nearest 0.1 g. The volume of each
sample was determined by a measuring glass with a
minimum scale of 0.1 mL. For each sample, density was
derived from the average of two repeated measurements.

For each tendon, Eparallel and Eperpendicular were ob-
tained by using the setup shown in Fig. 4. Note that
values of Eperpendicular along the x1 and x2 axes (i.e., E11

and E22) were both measured. The setup consisted of the
electronic balance, an acrylic plate positioned by the step
motor system for compression and a personal computer
for central control and data acquisition. Again, the stiff-
ness of the whole measuring system (about 4-TPa) is far
larger than that of tendon and the deformation of the
measuring system was ignored without introducing ad-
ditional errors in the measurements.

After putting each sample on the center of the
electronic balance with its longitudinal fiber axis parallel
or perpendicular to the surface of the balance, the acrylic
compressor was carefully positioned toward the tendon
sample. The compressor started to contact the sample
when reading of the balance started to increase. The
original height of each sample was determined before-
hand using water measurements (i.e., measurement ob-
tained at 0% strain condition). The sample was then
cyclically compressed at an average strain rate of

0.028/s. Each sample also received another cyclical com-
pression along the fiber axis at an average strain rate at
around 0.0004/s to determine influence of the strain rate
on values of the Young’s modulus. Note that the com-
pressor was advanced stepwise and the actual compres-
sion speed was not constant. Nevertheless, the averaged
strain rate can still be determined by the ratio of applied
strain to the total time in each step. We had empirically
found that the elastic stiffness of the tendon would de-
crease rapidly as the strain exceeded 12%. Hence, the
maximum strain was limited to be under 11% for each
sample. For the last sample, an additional compression
procedure described as follows was used to determine
the Young’s modulus obtained by the incremental laws
(Fung 1993). First, the sample was compressed sequen-
tially to the three strain conditions (i.e., 0, 4.7 and 9.5%).
Second, at each strain condition, the sample was cycli-
cally compressed at an average strain rate of 0.009/s with
a maximum compression ratio of 2%. The small defor-
mation produced an approximately linear stress-strain
relationship.

Consecutive readings of the electronic balance were
acquired at a rate of 2.5 Hz for every compression step
and the readings were stored in a personal computer via
a serial port. After completing six consecutive compres-
sion-relaxation cycles, each sample was kept in a normal
saline bath for about 10 min. Data for various compres-
sion procedures and at various directions were acquired
sequentially in a same manner. The area of tissue surface
between the sample and the electronic balance was mea-
sured to calculate stress.

Given the sound velocity in water, the sound veloc-
ity in tendon along a specific direction can be derived
from the equation:

Vtissue � Vwater �
Twater

Ttissue
, (7)

where Vwater represents the sound velocity in water at
room temperature, Ttissue and Twater denote the times-of-
flight with tissue and water in between the two transduc-
ers, respectively. For each recording, the time-of-flight
was measured by detecting the time when the radiofre-
quency (RF) signal first exceeded a prespecified thresh-
old. For all measurements, the threshold was 5 mV out of
a 1-V signal dynamic range. This threshold was chosen
so that accurate propagation time can be obtained with-
out being affected by baseline noise.

Velocity measurements perpendicular (i.e., along x1

axis) and parallel (i.e., along x3 axis) to the longitudinal
fiber axis of each sample were used to compute the
elastic stiffness coefficients c11 and c33 according to eqns
(3) and (4), respectively. The elastic stiffness coefficient

Fig. 4. Block diagram of the direct measurement setup.
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c13, however, cannot be derived directly. The following
procedures were taken to determine c13. First, based on
the assumption that tendon is transversely isotropic, val-
ues of sound velocity propagating at �135°, �45° and
135° relative to the longitudinal fiber axis were assumed
equal to those obtained at 45° relative to the longitudinal
axis. Likewise, speeds of sound at angles of –120°, –60°
and 120° were equal to that at 60°, speed of sound at an
angle of �30° was equal to that at 30°, and speed of
sound at –90° was equal to that at 90°. Thus, as shown in
Fig. 5, a velocity curve as a function of angle ranging
from –135° to 135° can be obtained using spline inter-
polation. Note that the convention used in the literature
(Hoffmeister et al., 1994) with the velocity along the x1

axis, being defined at 90° in the velocity curve, was
adopted. Also note that the velocity curve is approxi-
mately monotonic from 30° to 60°. By using a 1° incre-
ment, there are totally 31 values that can be used to
generate 31 corresponding c13 estimates based on eqn
(5). The elastic stiffness coefficient c44, which corre-
sponds to the propagation of transverse mode ultrasonic
waves through the tissue, was assumed to be negligible
compared to c11, c33 and c13. Thus, c44 was initially set to
zero (Levinson 1987, Hoffmeister et al. 1995). The value
of c44 was then varied over several orders of magnitude
to check its effects on c13 estimation. Finally, each esti-
mated c13 was applied to eqn (6), with the angle varying
from 30° to 60°. Totally, 961 (i.e., 31 times 31) velocity
estimates were obtained. The c13 value with the minimal
mean squared errors between the estimated velocity val-
ues and the interpolated curve was selected as the opti-
mal c13 estimate.

Eparallel and Eperpendicular in each tendon were com-
puted from the slope of the stress-strain curve. The strain
for each measurement was determined by the ratio of the

total deformation to the initial height. The corresponding
stress was obtained by dividing the load by the area of
contacting surface between the sample and the balance.
Note that, although the time-dependent Young’s modu-
lus of a viscoelastic material such as tendon can be
derived based on the relaxation function (Fung 1994),
such an approach was not adopted in our study. Instead,
we employed a simplified method similar to that reported
by Chen and Novakofski (1996). This approach ignored
the time-variation of stress at every step and the mea-
surement results were adequate to determine the spatial
relationship of elastic properties in tendon. In this ap-
proach, the total strain was first obtained at each step.
Next, the maximum reading from the electronic balance
for every compression step was used as the correspond-
ing stress. Finally, an interpolated stress-strain curve was
obtained by the spline method, and it was used to deter-
mine the tangent modulus (i.e., Young’s modulus) at the
three predetermined strain conditions (i.e., 0%, 4.7% and
9.5%). Note that the initial compression-relaxation cycle
was used for preconditioning the tendon and the corre-
sponding data were not included for estimation (Fung
1993). After preconditioning, the tangent moduli ob-
tained in the last five cycles were very similar to each
other and the mean value was chosen as the estimated
Young’s modulus.

The measured Eperpendicular (i.e., E11) was used in
eqn (2) along with c11, c33 and c13 to estimate c66 for
each tendon. The estimated values of c66 were then used
in eqn (1) to estimate Eparallel (i.e., E33). The estimated
and measured values of Eparallel were also used to calcu-
late the error E33 error, defined as:

E33 error �
mE33 � eE33

mE33
, (8)

where mE33 denotes the measured value and eE33 repre-
sents the estimated value of E33. Note that two estimates
of c66 can be obtained using eqn (2), but only the one
corresponding to a smaller E33 error was chosen.

An important goal of this study was to derive
Young’s modulus at different strains. Because tendon is
incompressible, compression applied along one axis in-
troduces motion in the other directions. The actual dis-
placement in different planes is hard to predict in an
anisotropic material. To simplify computations, we em-
ployed sound velocities and Young’s modulus measured
at the same strains to obtain estimates of E33. An exam-
ple is illustrated as follows. First, speeds of sound at 0°,
30°, 45°, 60° and 90° relative to the fiber axis measured
at the 4.7% strain condition were employed to obtain
estimates of elastic coefficients (i.e., c11, c33 and c13).
Next, these estimated coefficients were used together

Fig. 5. Velocity interpolation. (E) Mean values of all samples
at 0% strain.
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with the values of E11 at 4.7% strains derived from the
stress-strain curve to obtain estimates of c66. Finally, the
estimated values of E33 at 4.7% strains were computed
based on these estimates.

The influence of different strains on correlation of
the two approaches was analyzed using a multivariate
linear model (Littell et al. 1991). Let the column vector
Yi 	 [Yi1, Yi2, Yi3]
 represent the E33 error of the i-th
sample for the three strain conditions. Assuming a mul-
tivariate normal distribution, the following model can be
written:

Yi � u � �i �i � 1, 2, . . . , 6� , (9)

where the column vector u 	 [u1, u2, u3]
 is the mean
response of all samples at the three strains and �i is the
random error. Here, �i is assumed to be an independent
and identical normal distribution with the mean equal to
0 and the covariance equal to 1; for example, �i�i.i.d.
N3(0,1) (Diggle 1988; Yonesh and Schork 1986).

Multivariate repeated-measures analysis of variance
was applied to evaluate effects of strain variations. The
null hypothesis for the independence of the strain con-
ditions on E33 estimation is H0: u1 	 u2 	 u3. In other
words, the null hypothesis assumes that the mean value
of E33 error for all samples at zero strain (i.e., u1) is equal
to that at 4.7% (i.e., u2) and that at 9.5% (i.e., u3). Hence,
we calculated the averaged sums of E33 error across all
samples at each strain state (i.e., u1, u2 and u3) and
employed an F-test to test the null hypothesis. Further-
more, the probability of polynomial relations among
strain effects was also analyzed. First, we transformed
the values of E33 error into a 2 � 3 matrix representing the
linear and quadratic trends for E33 error at the three strain

levels (Littell et al. 1991). Next, univariate ANOVA tests
were employed for each polynomial trend to determine
its significance. A p value less than 0.05 was used to
indicate statistical significance for all analyses.

RESULTS

Results of mass density and velocity measurements
for six tendons (i.e., samples A, B, C, D, E and F) are
summarized in Table 1, where � represents the mass
density. The mean mass density of six tendons was
1.12 g, with an SD of � 0.02 g. In Table 1, V0 denotes
the sound velocity propagating along the fiber axis, V90

represents the velocity perpendicular to fiber axis, and

Fig. 6. Anisotropy of sound speeds. Error bars represent � 1 SD.

Table 1. Summary of mass density and velocity measurements

Sample A B C D E F Mean � SD

� (g/cm3) 1.12 1.16 1.12 1.12 1.12 1.10 1.12 � 0.02
V0 (m/s) S0 1823 1938 1899 1885 1830 1792 1861 � 55

S4.7 1774 1835 1798 1809 1763 1734 1785 � 36
S9.5 1723 1764 1721 1713 1696 1692 1718 � 25

V30 (m/s) S0 1732 1793 1761 1762 1765 1708 1753 � 29
S4.7 1716 1739 1745 1725 1735 1706 1727 � 14
S9.5 1651 1682 1682 1660 1674 1674 1670 � 12

V45 (m/s) S0 1676 1720 1725 1712 1694 1666 1698 � 24
S4.7 1661 1692 1718 1676 1679 1662 1681 � 21
S9.5 1620 1661 1678 1636 1633 1644 1645 � 21

V60 (m/s) S0 1638 1676 1702 1664 1633 1614 1654 � 32
S4.7 1628 1667 1694 1648 1628 1609 1645 � 31
S9.5 1617 1655 1670 1629 1597 1596 1627 � 30

V90(11) (m/s) S0 1624 1630 1630 1615 1597 1584 1613 � 19
S4.7 1620 1625 1625 1611 1591 1578 1608 � 19
S9.5 1615 1621 1621 1605 1586 1553 1600 � 26

V90(22) (m/s) S0 1615 1618 1608 1604 1585 1576 1601 � 17
S4.7 1596 1612 1603 1600 1578 1570 1593 � 16
S9.5 1592 1608 1597 1580 1573 1547 1583 � 21
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V30, V45 and V60 denote the velocities at 30°, 45° and 60°
relative to the fiber axis, respectively. Note that V90(11)

and V90(22) represent the sound velocities along the x1

and x2 axes, respectively. S0, S4.7 and S9.5 denote veloc-
ities obtained at the three strain conditions, 0%, 4.7% and
9.5%, respectively. Among the six tendons, results of
velocity measurement agreed well with one another and
velocities of all six tendons had the same gross depen-
dency on angle. Generally speaking, the maximal speed
occurred when the propagation was parallel to the lon-
gitudinal fiber axis (i.e., 0°). The velocity decreased as
the angle relative to the fiber axis increased. It reached
the minimum when it was perpendicular to the fiber axis.
In Fig. 6, mean values of the measured speed were
plotted as a function of angle, with the error bar repre-
senting � 1 SD. Note that the degree of anisotropy (i.e.,
the difference between V0 and V90) decreases as the
strain increases. Also note that, in Table 1, the two speeds
of sound measured perpendicular to the fiber axis (i.e.,
V90(11) and V90(22)) are similar to each other for each sam-
ple. In other words, the sound velocity measurement results
are consistent with the transverse isotropy assumption.

Tables 2, 3 and 4 list results of estimated elastic
stiffness coefficients, measured Young’s moduli, esti-
mated Young’s moduli, estimated c66 and percentage of
error between measured and estimated E33. Definitions
of S0, S4.7 and S9.5 are the same as those defined in Table
1. Again, angle dependence of elastic stiffness coeffi-
cients was clearly shown. In general, the mean value of

c33 was the largest and c11 was the smallest, with c13 in
between. The estimated c13 in each case also satisfied the
relation c2

13  c11c33. In addition, we found that the
estimated c13 changed monotonically as the angle varied
from 30° to 60°. For all estimated c13 values, the average
velocity error was less than 2 m/s between the estimated
values, that is, estimates based on eqn (6), and the data
from interpolation.

The measured Young’s modulus also depended on
angle. At 0% strain, all measured Eparallel values (i.e.,
E33) were larger than the corresponding Eperpendicular val-
ues (i.e., E11 and E22), with an average ratio of 4. Note
that the values of E11 and E22 are similar at this strain
condition. The ratios of E33 to E11 and E33 to E22,
however, seem to decrease at larger strains. At 4.7%
strain, the ratios of E33 to E11 and E33 to E22 are 1.4 and
2.0, respectively. At 9.5% strain, the ratios of E33 to E11

and E33 to E22 become 0.6 and 1.1, respectively. In other
words, the tendon becomes more transversely isotropic at
small strains and becomes more isotropic at larger
strains. The estimated values of c66 were about an order
of magnitude lower than c11, c33, and c13. Compared with
actual measurements, all the six values of Young’s mod-
ulus estimated from c66 (i.e., eE33) were significantly
smaller. As shown in Table 4, however, there is a ten-
dency that the percentage of estimated error of E33 (i.e.,
E33 error) decreases as the applied strain increases.

Statistical analysis results are summarized in Table
5. Row 1 lists effects of strain variations on E33 error.

Table 2. Summary of estimated elastic stiffness constants

Sample A B C D E F Mean

C11 (Gpa) S0 2.95 3.08 2.97 2.92 2.88 2.78 2.93
S4.7 2.94 3.06 2.95 2.90 2.86 2.76 2.91
S9.5 2.92 3.05 2.94 2.88 2.84 2.73 2.89

C33 (Gpa) S0 3.72 4.35 4.04 3.98 3.78 3.53 3.90
S4.7 3.52 3.90 3.62 3.66 3.51 3.31 3.59
S9.5 3.32 3.61 3.31 3.28 3.25 3.15 3.32

C13 (Gpa) S0 2.91 3.20 2.88 3.05 3.09 2.91 3.00
S4.7 2.94 3.22 3.23 2.99 3.13 2.96 3.08
S9.5 2.75 3.17 3.08 2.91 2.93 2.93 2.96

Table 3. Summary of Young’s modulus

Sample A B C D E F Mean

E11 (kPa) S0 30 17 29 56 54 22 35
S4.7 162 241 404 242 253 170 245
S9.5 610 1902 2149 1237 1324 1071 1382

E22 (kPa) S0 30 17 30 49 55 22 34
S4.7 96 152 206 242 268 91 176
S9.5 394 884 1275 819 935 521 805

E33 (kPa) S0 147 85 125 183 163 100 134
S4.7 194 179 348 435 412 366 322
S9.5 461 573 1078 828 792 1065 800

Tendon elasticity measurements ● P.-L. KUO et al. 1281



Rows 2 and 3 represent the linear and quadratic trends
between E33 error and strain, respectively. The results
showed that the strain has a clear effect on E33 error, as
indicated by the F value of 18.98 and p value of 0.0091.
Moreover, the F value of 28.3 (p 	 0.0031) also implies
that the linear effect of strain on E33 error is significant.
On the contrary, the F value of 3.48 (p 	 0.1212)
indicates that the quadratic component of strain effect is
not as significant. In other words, strain variation has a
significantly linear influence on the correlation of both
approaches.

Table 6 shows influence of the strain rate on E33

measurements. In most strain conditions among the six
samples, the E33 obtained at a slower strain rate was
smaller than that determined at a higher strain rate. Table
7 lists the comparison of measured Young’s moduli,
estimated Young’s moduli and percentage of the estima-
tion error between values obtained by the simple com-
pression procedure and incremental laws. All the mea-
sured Young’s moduli obtained by incremental laws
were larger than those obtained by the simple compres-
sion procedure. Also note that the percentage of the
estimation error was smaller for results obtained by the
incremental laws. The comparison of stress-strain curves
along the x3 axis between the simple compression pro-
cedure and the procedure based on the incremental laws
is shown in Fig. 7. A, B, C and D denote curves derived
from initial strain state at 0%, 4.7%, 9.5% and 0% with
a deformation range of 0% to 11%, respectively.

DISCUSSION

In this paper, we successfully showed that tendon
possesses transverse isotropy in the plane perpendicular

to the fiber axis at small strains. Because it is relatively
easy to create a plane strain state in tendon (Kuo et al.
1999), a transverse isotropy model greatly reduces the
complexity in reconstruction of elastic parameters of
tendon (Skovoroda et al. 1994). Although tendons are
viscoelastic materials and the relaxation modulus or the
storage modulus was not measured, the observations in
this study are sufficient for future development of tendon
elasticity imaging because linear elasticity can be applied
to biologic tissues at small strains (Fung 1993). More-
over, we also showed that the degree of anisotropy
decreases as the strain increases. Such a phenomenon
may be due to the fact that fiber arrangement becomes
irregular when tendon is compressed along the x3 axis.
Because anisotropy of tendon primarily results from the
axial arrangement of fibers along the x3 axis, irregularly
arranged fibers consequently decrease the degree of an-
isotropy. Compression along the x1 or the x2 axis, on the
other hand, does not significantly disturb the fiber ar-
rangement.

The elastic stiffness tensor of formalin-fixed bovine
Achilles tendons had been measured by Hoffmeister et
al. (1994, 1995, 1996a). On the other hand, results of our
study were based on fresh bovine Achilles tendons. The
two studies have good agreement in mass density and
anisotropy of velocity. Furthermore, the three elastic
stiffness coefficients c11, c33 and c13 are at the same order
of magnitude. However, dependence on angle, V0 and c33

was smaller in our study. Such a discrepancy may be
explained by the fact that formalin fixation produces a
measurable increase in longitudinal-mode ultrasonic ve-
locity (Hoffmeister et al. 1994). Because the primary
effect of formalin fixation on tissues is to bind together
amino acids in the adjacent protein chain, this process
may have a bigger impact along the fiber axis where
protein chains are most reinforced. This results in a
larger increase in velocity along the same direction.

An important feature of our study was to correlate
the directly measured E33 values with those obtained
from elastic stiffness coefficients. The discrepancies
were large at small strains, but became smaller as the
strain increased. Moreover, Hoffmeister et al. (1996b)

Table 4. Summary of estimated C66, E33 and percentage of estimation error in E33

Sample A B C D E F Mean

C66 (GPa) S0 0.71 0.73 0.92 0.57 0.35 0.38 0.61
S4.7 0.45 0.39 0.06 0.46 0.06 0.10 0.25
S9.5 0.73 0.26 0.08 0.30 0.20 0.007 0.26

eE33 (kPa) S0 12 8 14 24 20 8 14
S4.7 58 88 126 91 80 53 83
S9.5 222 617 627 394 409 320 431

E33 error (%) S0 91 90 88 87 87 91 89
S4.7 70 50 63 79 80 85 71
S9.5 49 7 41 52 48 69 44

Table 5. Summary of statistical results

Effect F value p value

Strain 18.98 0.0091*
Linear trend 28.30 0.0031*
Quadratic trend 3.48 0.1212

* p  0.05.
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had derived Young’s modulus from measurements of
elastic stiffness tensor based on the linear elasticity
model. The values of Young’s modulus in their results
were significantly larger than those directly measured in
our study. Nevertheless, such results were reasonable,
although the tendon consists of viscoelastic materials and
the linear elasticity model inevitably introduces errors.
Nonetheless, mechanical properties of the tendon ob-
tained by the cyclical compression method can be ap-
proximated by assuming linear elasticity if the strain rate
is fast enough (Hall et al. 1997). Generally speaking, the
Young’s modulus of a biologic tissue is larger if the
viscous nature (e.g., stress relaxation) plays a less sig-
nificant role in a mechanical testing (Nordin and Frankel
1989). At a higher strain rate, the viscous loss becomes
smaller and the measured Young’s modulus can exceed
that measured at a slower rate by several orders of
magnitude (Abé et al. 1996). As reported by Hall et al.
(1997), a strain rate faster than 0.5/s may be adequate to
fairly describe the mechanical behavior of a biologic
tissue as elastic. Therefore, it is reasonable to expect that
the disagreement decreases as the strain rate increases. In
this paper, strain rate dependence of Young’s modulus
was found. We also showed that increasing strain rate

significantly reduced disparity between the two ap-
proaches. In addition, the decrease at larger strains may
also result from the fact that the viscous loss decreases as
the measurement time increases.

Another important character of tendons is that the
stress-strain relationship is nonlinear. Moreover, the tan-
gent modulus at a specific strain state determined from
the stress-strain relationship differs among curves ob-
tained from different initial deformation conditions
(Fung 1993). For example, the tangent modulus at 5%
strain derived from the stress-strain curve obtained from
a simple 0% to 11% strain cycle (i.e., the initial strain-
state is 0%) differs from that obtained by a small pertur-
bation cycle around 5% strain (i.e., the initial strain-state
is 5%). One popular approach to determine the Young’s
modulus at a specific initial condition is to use the
incremental laws. In other words, the sample is first
deformed to the particular strain state, then a small cyclic
perturbation is introduced to obtain the stress-strain re-
lationship. In our study, we also studied the Young’s
modulus measurement based on the incremental laws
and compared the results to the three initial strain con-

Fig. 7. Comparison of stress-strain curves between the incre-
mental laws and the simple compression procedures. Curves
derived by initial strain-state at (A) 0%, (B) 4.7%, (C) 9.5%,

and (D) 0% with a range of 0% to 11% deformation.

Table 6. Comparison of E33 measured at different strain rates

Sample A B C D E F Mean

E33 (kPa) Fast S0 147 85 125 183 163 100 134
S4.7 194 179 348 435 412 366 322
S9.5 461 573 1078 828 792 1065 800

E33 (kPa) Slow S0 198 107 111 174 197 137 154
S4.7 212 160 158 247 177 100 175
S9.5 353 613 757 577 502 466 544

Table 7. Comparison of Young’s modulus measurements
between the simple compression procedure and the

procedures based on incremental laws

Simple
procedure

Incremental
procedure

E33 (kPa) S0 99 220
S4.7 366 805
S9.5 1065 1452

E11 (kPa) S0 22 103
S4.7 170 692
S9.5 1071 1807

eE33 (kPa) S0 8 38
S4.7 53 215
S9.5 320 555

c66 (GPa) S0 0.38 0.38
S4.7 0.10 0.10
S9.5 0.07 0.07

E33 error (%) S0 91 82
S4.7 85 73
S9.5 70 61
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ditions used in the velocity measurements. Results
showed that the Young’s modulus measurement based
on the incremental laws had lower discrepancy between
the two approaches. Such a conclusion, however, still
needs to be verified by future experiments.

c44 was neglected in our study. Because the reported
shear stiffness values of most fresh biologic tissues are
smaller than 5 MPa (Hoffmeister et al. 1996a), the c44 in
our analysis was varied with a upper limit of 10 MPa,
and we found that the change in c13 due to various c44

values was less than 1%. The result is also consistent
with that reported in the literature (Hoffmeister et al.
1995).

In conclusion, we examined mechanical properties
of fresh tendon specimens based on direct measurements
and estimation from elastic stiffness constants. By direct
measurements, we successfully showed that tendon ex-
hibits transverse isotropy in the plane perpendicular to its
fiber axis. In addition, estimation of elastic properties
based on the transverse isotropy model may be applica-
ble for tissues under a high strain rate. Such information
is useful in further research work for tendon elasticity
imaging.
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