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An efficient speckle tracking algorithm is proposed for motion estimation in ultrasonic imaging.
Speckle tracking involves a matching process and a searching process. The matching process of the pro-
posed algorithm is based on a Block Sum Pyramid algorithm that significantly reduces the computa-
tional complexity while maintaining the same accuracy as the conventional sum of absolute difference
approach. The searching process, on the other hand, is based on a multilevel search strategy rather than
the full-search strategy used by most conventional tracking methods. Both simulated speckle images
and clinical breast images were used to test the performance of the proposed algorithm. The results show
that the computation efficiency is improved by up to a factor of five over the conventional approach. The
improved efficiency enables real-time or near-real-time implementation of motion estimation in ultra-
sonic imaging, which is particularly beneficial in areas such as blood flow estimation, elasticity imaging,
speckle image registration, and strain compounding.

KEeY WoRDSs: Block sum pyramid; motion estimation; multilevel search; speckle tracking; ultrasonic im-
aging.

. INTRODUCTION

Speckle tracking has a wide range of applications in medical ultrasound. For example,
two-dimensional blood velocity vectors can be estimated by tracking the motion of the
speckle patterns produced by blood;' another example is the estimation of internal strain of a
tissue under compression through measurements of tissue displacement using speckle track-
ing.”" The estimation of internal strain is a critical step in imaging the hardness of tissue.
Speckle tracking is also utilized in strain compounding, a speckle reduction technique in
which the tissue motion resulting from external compression must be accounted for so that
the images to be compounded are spatially matched.™

Speckle is an inherent artifact in ultrasonic imaging. It is produced by the coherent inter-
ference of scatterers within a sample volume and may be present over the entire image. Al-
though speckle’s mottled appearance degrades contrast resolution, it can also be utilized for
image analysis and image processing. In particular, because the speckle characteristics re-
main approximately unchanged if the relative motion between the speckle object and the
transducer is small compared to the aperture size, the image speckle pattern has been used to
track tissue and blood motion.’

Speckle tracking typically involves matching and searching between two images. The
two processes are handled independently, and both are critical in determining the computa-
tional efficiency. The general procedures of speckle tracking are illustrated in figure 1, in
which the image on the left is the reference image and the image on the right is the compari-
sonimage. Note that in soft tissue imaging and blood flow estimation, motion information is
often required for every image pixel because of potential tissue deformation and nonuniform
blood velocity distribution. This contrasts with video processing, in which region-based
motion estimation is often satisfactory. To track the motion, each pixel of interest is associ-
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FIG. 1 Schematic of the template block, the candidate block and the search window.

ated with a template block centered at that pixel. The template block needs to be sufficiently
large such that the general characteristics of the region around the pixel of interest can be ad-
equately represented. Then, the similarity between the template block in the reference image
and a candidate block in the comparison image is calculated based on the correlation coeffi-
cient or a similar measure, such as the sum of absolute difference (S4D). The size of the can-
didate block is the same as that of the template block, and the center of the candidate block is
referred to as the candidate pixel. The similarity is calculated for all candidate pixels within a
prespecified search region. The candidate pixel with the highest similarity is determined as
the best-matched pixel, and the displacement between the best-matched pixel and the origi-
nal pixel is the estimation result. Its simplicity and reasonable accuracy has meant that the
SAD approach is commonly utilized.

The other determining factor for the computational efficiency is the effectiveness of the
searching process. A full search is typically employed, in which the similarity to the tem-
plate block is calculated for every pixel in the search window. In many applications, the
full-search approach is combined with the SAD approach. The full-search S4D technique is
simple and accurate, but it is also time consuming which limits its use in real-time applica-
tions. The processing efficiency can be improved by reducing the number of candidate
blocks (i.e., improvement in the searching process)® or by using a more efficient algorithm to
calculate the similarity (i.e., improvement in the matching process).”"' The two approaches
can also be combined to further speed up the computations.” Note that although other
speckle tracking algorithms may have been implemented in real-time, improving the effi-
ciency is still desirable since it results in either less computation time or less system require-
ments.

In this paper, a Block Sum Pyramid (BSP) algorithm is proposed for calculating the simi-
larity between two blocks." " This algorithm is adopted from motion estimation as used in
video signal processing and it has the same accuracy as the conventional SAD approach
while requiring less computations. Although the same BSP approach proposed for video
signal processing is applied to speckle tracking for ultrasonic imaging, it is worth noting that
motion estimation in video is typically region based, whereas speckle tracking in ultrasonic
imaging is pixel based. Consequently, speckle tracking is likely to be more computationally
demanding due to the necessity for overlapping matching blocks. Also, the hypothesis that
the BSP algorithm can effectively improve the computation efficiency for speckle images
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also needs to be tested, due to potential performance issues related to speckle decorrelation.
Here the BSP algorithm is combined with a multilevel search algorithm — instead of the
full-search algorithm — to further improve the efficiency; the effectiveness of this approach
is also investigated. The proposed combined approach is referred to as the multilevel BSP
algorithm and it is compared to the full-search SAD approach using both simulated speckle
images and clinical breast images.

Il. SPECKLE IMAGE SIMULATIONS

Simulations are performed to evaluate the performance of the proposed multilevel BSP
technique. The simulation model is based on that proposed by Li and Wu.® According to this
model, scatterers are randomly distributed in a three-dimensional space. The amplitude of
the echo from each scatterer is random and all scatterers have an independent and identical
distribution. The phase of the echo, on the other hand, changes with the distance between the
scatterer and the transducer. The minimum spacing between two possible scatterer positions
is 0.02 mm. The point spread function (PSF) of the imaging system is a cosine-modulated
three-dimensional Gaussian function:

_n[%+L 72] (1)
PSF(x,y,z)=e *°* °" °*/cos(2nf,z)

where the center frequency f;is 5 MHz, and 6, 6, and ©, are the —6.82 dB widths of the PSF
in the three respective dimensions (all —6.82 dB widths of the PSF used in the simulation
model are 0.3 mm). To obtain a B-mode image, the envelope of the predetection signal is
computed at a certain elevational position (i.e., the image plane) using the Hilbert transform.
Using this model, three-dimensional tissue motion can also be simulated by moving the orig-
inal position of a scatterer to a new position. Two simulated images with a size 0f2.56x2.56
mm are shown in figure 1. As an example, the image shown in figure 1b is displaced verti-
cally by 0.1 mm from the image shown in figure la. As illustrated in figure 1, a template
block centered at the original pixel in the reference image is matched to a candidate block
within the search window in the comparison image. The search window is usually centered
at the original pixel. Then blocks associated with pixels within the search window are
matched and the best-matched block is chosen in order to determine the displacement.

lll. THE BSP ALGORITHM

Basics

Figure 2 shows a flow chart of the proposed BSP algorithm. The BSP algorithm first es-
tablishes a pyramid for each block — a schematic diagram of a pyramid is provided in figure
3. The block (template or candidate) is originally at the bottom level of the pyramid with a
size of 2"x2" pixels, where m is equal to 5 in figure 3. Note that the block size must be a
power of 2. A pyramid of (m+1) levels can be built with the top level being the first level and
the bottom level being the (m+1)-th level. Every pixel on the (m—1)-th level in the pyramid is
obtained by summing its corresponding 2x2 neighboring pixels on the m-th level. The pro-
cess continues until the top level with only one pixel is reached. In other words, the pyramid
is built up according to
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FIG. 2 Flow chart of the BSP algorithm.
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where X" (i, j) is the value of the pixel (i, j) on level m. With the pyramid, the SAD value for

each layer m can be calculated as

om om

SAD"(X,¥)= ¥ 3 |X" (G )~ Y" G, j)

i=1 j=1

where X" and Y" denote pixel values for the template block and the candidate block on the

m-th level, respectively. It can be further derived from Eq. (3) that
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According to Minkowski’s inequality,” we have
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for a block size of 2"x2". From Eq. (2) and Eq. (5) and for any m, 0<m<n, it can be obtained
that

szl 2m71 (6)
SAD" (i, j)= 3" 3| X", )= Y™ (i, )| = SAD" G, )
i=l j=I

Thus,

SAD" (i, j) = SAD" (i, j) = SAD" (i, j) = --- > SAD" (i, j) (7
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Based on Eq. (7), the BSP algorithm is implemented as follows. First, a threshold SAD,
is specified as a comparison criterion. The threshold is typically the S4D value between the
template block and the candidate block at the original position. Then, for every search posi-
tion, the BSP algorithm first compares SAD’ to SAD,,. 1f SAD'is greater than SAD,, , this
block can be discarded; otherwise, SAD' is compared to SAD,,. The process continues until
this candidate block is discarded or the bottom level is reached. Ifthe bottom levelisreached
and its SAD" is still smaller than SAD,,, SAD" becomes new SAD,, . After searching all the
designated positions within the search window, a final S4D,, can be obtained with the corre-
sponding block being the best-matched block. The displacement between the template
block and the best-matched candidate block is the estimated result. Since the BSP algorithm
eliminates calculations of the SAD at the bottom level (i.e., largest block) in most situations,

the computation time is reduced.

min®

min®

Computational requirements

Simulated images were used to compare the performance of the BSP algorithm with that
of'the conventional SAD approach (i.e., where the SAD value is calculated from the original
blocks without building a pyramid). In both cases, the block size is 64x64 pixels covering an
area slightly larger than 4Ax4\, where A is the acoustic wavelength. The search window is
1.36Ax1.36A centered at the original pixel position. The number of computations (including
additions, subtractions, multiplications, and absolute values) is used as an index for the com-
putational complexity.

For a 64x64 block, the pyramid has a total of seven levels and the pyramid consists of a se-
quence of blocks with sizes from 2°x2° to 2°x2°. According to Eq. (2), three additions are
needed for the construction of each pixel in the pyramid. Thus, the total number of additions
for a seven-level pyramid is

6
3.3121. 2" = 4095 ®

n=1

Note that since the blocks in an image are overlapping, the pyramids only have to be con-
structed once for the entire image. When computing the similarity, the precomputed values
for the pyramids are readily available through proper indexing. In addition to building pyra-
mids, the SAD values also need to be calculated from the top level down to a certain level NV,
based on the algorithm depicted in figure 2. The number of computations for SAD calcula-
tions at each level is listed in table 1. Ateach level n, itis straightforward to see that the num-
ber of computations is (3x2*—1). Thus, with precomputed pyramids, the total number of
computations required by the BSP algorithm for each candidate block becomes

No
> (32" -1 )
n=0

The conventional matching technique only calculates the SAD value at the bottom level
(i.e., without building the pyramid). For a 2°x2° block, this requires 12,287 (=4095x2+4097)
computations.

It is apparent that obtaining benefit from using the proposed BSP algorithm depends on
the number of levels required for the S4D calculations (i.e., N, defined in Eq. (9)). Simulated
speckle images with a21x21 search window and a 64x64 block size were used to investigate
the expected improvement from the proposed algorithm. The results are shown in table 2.
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TABLE 1 Number of computations required at each level for the BSP algorithm.

+ _ | . \ Total
Level 0 0 1 1 2
Level 1 3 4 4 11
Level 2 15 16 16 47
Level 3 63 64 64 191
Level 4 255 256 256 767
Level 5 1,023 1,024 1,024 3,071
Level 6 4,095 4,096 4,096 12,287

TABLE 2 Percentage of comparisons at each level for the BSP algorithm.

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

No. of pixels 441 430 385 316 111 39 25
Ratio 100 97.6 87.39 71.59 25.25 8.85 5.74
Mathematical operations 2 11 47 191 767 3,071 12,287
No. of computations 882 4,370 18,095 60,356 85,137 119,769 307,175

Because the algorithm starts from the top level (i.e., level 0), all the 441 (i.e., 21x21) SAD
values at level 0 need to be computed. Depending on the outcome of the comparison at the
top level, the matching process may terminate or continue to the next level. The second row
in table 2 lists the total number of SAD comparisons at each level, and the corresponding ra-
tio to the total candidate pixels in the search window is listed in the third row. The fourth row
lists the total number of computations required at each level (i.e., at level n, as shown in the
last column of table 1). Finally, the last row shows the total number of computations for each
level (the number in row 2 multiplied by the number in row 4). Based on table 2, the total
number of S4D computations needed by the BSP algorithm is 595,784. Thus, on average,
only 1,351 computations are required to find the similarity at each pixel, compared to 12,287
computations required when using the conventional SAD approach.

IV. RESULTS OF THE BSP ALGORITHM

The performance of the BSP algorithm was tested in C on a personal computer with a
600-MHz Pentium III processor and 384 MB of 133-MHz RAM. Figure 4 shows the esti-
mated results from the images used in figure 1: figure 4a is for the BSP algorithm and figure
4b is for the full-search SAD approach. The displacement vector is represented by an arrow
whose length indicates the distance. The actual displacement is 0.325X downward. The
methods have identical performance, and the results are summarized in table 3: the computa-
tion time when using the BSP algorithm is improved 13-fold over using the full-search SAD
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FIG. 4 Estimated displacements by BSP (a) and full-search SAD (b) approaches.

TABLE 3 Comparison between SAD and BSP algorithms in accuracy and computation time.

Block size (1) Search window (1) Performance SAD BSP
4.15x4.15 1.36x1.36 Time (s) 3323 25.5
Accuracy (%) 100 100

approach. Note that the block size must be a power of 2 for the BSP algorithm. The sampling
rate was determined by considering the resolution requirement and was verified by simula-
tions.

The motion simulated in figure 1 is restricted to the image plane only. In practice, the mo-
tion is three dimensional, so that speckle decorrelation resulting from the out-of-plane mo-
tion cannot be ignored. The effects of speckle decorrelation on the performance of the BSP
approach were investigated using two sets of simulations. The first set of images had dis-
placements in the out-of-plane direction (i.e., ¥) only; the displacements were 0, 0.325A,
0.65X, 0.97A, 1.30A and 1.62A. The second set of images had an axial (i.e., Z) motion of
0.325) in addition to the same out-of-plane (¥) motion. The speckle decorrelation due to the
Y motion is illustrated in figure 5, with the horizontal axis being the ¥ displacement and the
vertical axis being the correlation coefficient between the reference image and the compari-
son image. The dotted and solid lines denote results from the first set (I) and the second set
(IT), respectively (with the Z motion being compensated). The correlation coefficient de-
creases to below 0.5 when the ¥ motion is approximately equal to one wavelength.

Figure 6 shows the estimation results when ¥ motion is present. Images in the left column
(i.e., figure 6a, d, g, j, m) are all identical to the original reference image. The middle column
(i.e., figure 6b, e, h, k, n) shows the images with a Z motion of 0.325A and a ¥ motion of
0.325X,0.65X,0.97A, 1.301 and 1.62A, respectively. The in-plane Z displacement can be es-
timated by the speckle tracking algorithm. From the estimated displacements shown on the
third column, it is observed that speckle tracking errors increase with the amount of
out-of-plane motion (i.e., increase with speckle decorrelation). The estimation results are
further summarized in table 4. It is shown that even if the out-of-plane motion is only 0.65A,
the accuracy drops to 30% to 40%. Thus, the out-of-plane motion has a significant influence
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FIG. 5 Y-axis displacement vs. correlation coefficient. The vertical axis represents the correlation coefficient
between the reference image and comparison image, and the Y-axis displacement is indicated by the horizontal axis.

on speckle tracking. In addition, the estimation results based on full correlation coefficient is
also included in table 4. Ifthe out-of plane motion is 0.325X , the accuracy based on correla-
tion coefficient has lower tracking accuracy than the other two approaches. For a larger
out-of-plane motion, the accuracy drops to the extent that the tracking results are no longer
reliable. Therefore, the proposed BSP algorithm has better accuracy than using the full cor-
relation coefficient when the images are sufficiently correlated.

V. IN COMBINATION WITH THE MULTILEVEL SEARCH ALGORITHM"®

The BSP algorithm focuses on the matching process of speckle tracking. In order to fur-
ther improve the performance, the multilevel block-matching algorithm (MLBM)" was
used to speed up the searching process. Note that the BSP algorithm lowers the computa-
tional complexity by decreasing the number of calculations in block matching without the
loss of estimation accuracy. The MLBM, on the other hand, improves the computation
speed by reducing the number of blocks that need be searched, but a different estimation re-
sult may be obtained. The combined algorithm is referred to as the multilevel BSP algo-
rithm. A schematic diagram of the MLBM algorithm is shown in figure 7. The complete
search is broken down to N stages (N =4 in the example shown in figure 7). At firstonly nine
pixels in the comparison image are candidates, as illustrated by the nine dots in the left panel
of figure 7. Atsubsequent stages, the block size, the search window size, and the positions of
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TABLE 4 Tracking results of BSP, SAD and full correlation coefficient approaches as a function of Y-axis dis-
placement.

Y displacement (1) 0 0.325 0.65 0.97 1.30 1.62
BSP 100 95.84 31.15 0.24 0 0
Accuracy (%) SAD 100 95.984 31.15 0.24 0 0
CcC 100 93.46 44.11 0.24 0 0
Correlation coefficient 0.87 0.73 0.54 0.41 0.28 0.24
Template Block Search Window Candidate Block
< ¥

Searching Point

Feference Image Comparison Image

FIG. 7 Illustration of the multilevel search.

the candidate pixels can be adjusted. The overall displacement is the accumulation of the
motion vectors from all N stages. Figure 8 shows that the estimation errors may accumulate.

As previously noted, the computational efficiency is improved by reducing the total num-
ber of candidate points. The choice of the number of stages, the block size, and the search
window size at each stage is a trade-off between estimation accuracy and computation
speed. Note that although the proposed method requires fewer computations, it is sequential
in nature and not as amenable to parallel processing. In the following results, the multilevel
BSP uses two stages with the same block size. The search window size of the second stage,
on the other hand, is reduced by 50% from that of the first stage and the first stage only
searches the nine corner points as illustrated in figure 7.

The clinical breast images shown in figure 9a and b were used to test the multilevel BSP al-
gorithm. The images were acquired using a commercial imaging system (ATL HDI 3000,
Bothell, Washington) and a linear array transducer (ATL L10-5, 38 mm). During data ac-
quisition, the breast was axially compressed by a transducer held by a clinical technician.
Each pixel in the acquired image had a resolution of 8 bits and the total image is 240x352
pixels. Note that speckle tracking between the precompression image (figure 9a) and the
postcompression image (figure 9b) is necessary for elasticity imaging and strain compound-
ing.” In this case, significant speckle decorrelation may exist due to external compression
and out-of-plane motion. Compared to the full-search SAD algorithm, the multilevel BSP al-
gorithm improves the computation time by a factor of 5, up from a factor of 3 when using the
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FIG. 8 Illustration of the accumulation of motion vectors in the multilevel search.

BSP alone. Thus, it is clear that the combination of BSP and multilevel search further im-
proves the efficiency of speckle tracking. The estimated displacement distribution using
full-search S4D and multilevel BSP are given in figure 9c and d, respectively, which shows
that the two displacement distributions are similar in most regions except for the bottom por-
tion of the images. This is mainly due to the poor signal-to-noise ratio at depth and that the
speckle correlation coefficient is too low in those regions. The estimation results are sum-
marized intable 5. Itis concluded that the multilevel BSP algorithm can significantly reduce
the computational complexity while maintaining sufficient tracking accuracy.

VI. CONCLUDING REMARKS

This study tested the efficiency of the multilevel BSP algorithm on both simulated and
clinical images, with the results representing improvements over both the BSP algorithm
and the MLBM algorithm. On clinical ultrasonic images, the combined algorithm is approx-
imately 5 times faster than the full-search SAD algorithm. Note that the number of computa-
tions is used as an efficiency index in some cases. The actual performance may deviate from
that predicted from the number of computations, due to the differences in the number of
logic operations, memory management, and system. Nonetheless, a clear improvement is
demonstrated in this paper. It is expected that many areas of medical ultrasound imaging
could benefit from the more efficient speckle tracking technique, including blood flow esti-
mation, elasticity imaging, three-dimensional image registration and strain compounding.
Moreover, its superior computational efficiency makes the technique more suitable for
real-time or near-real-time applications than conventional speckle tracking techniques.
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