電工學小考 (Chapters 1 and 2) 10/25/2006

1. (a) The power delivered to the device is

$$p_{ab}(t) = v_{ab}(t) \cdot i_{ab}(t) = 5A \cdot 10 \sin(200\pi t)V = 50 \sin(200\pi t)W.$$

(b) The energy delivered to the device from t=0 to t=10ms is
 $w = \int_{t=0}^{t=10ms} p_{ab}(t)dt = \int_{t=0}^{t=10ms} 50 \sin(200\pi t)dt = \frac{50}{200\pi} (-\cos(200\pi t)) \Big|_{t=0}^{t=10ms}$
 $= \frac{-1}{4\pi} (\cos(2\pi) - \cos(0)) = \frac{-1}{4\pi} (1-1) = 0J.$

- 2. (a) A super node is formed by drawing a dashed line enclosing several nodes and any elements connected between them.
 (b) The net current entering a super node is zero. Alternatively, the sum of the currents entering a super node equals the sum of the currents leaving a super node.
- 3. KCL at node A: $i_2 = i_x + 1$

KVL for loop 1: $10i_x = 5\Omega \cdot i_x + 20\Omega \cdot (i_x + 1) = 25i_x + 20$, $i_x = -\frac{4}{3}A$

$$\therefore v_2 = 20\Omega \cdot (i_x + 1) = -\frac{20}{3}V$$

KCL at node B: $i_1 = 1 + 2 = 3A$, $\therefore v_1 = 10i_x - 10\Omega \cdot 3A = -\frac{40}{3} - 30 = -\frac{130}{3}V$

4. (a) Circuit with an open circuit:

KCL at node 1: $i_r = i_x - 0.5i_x = 0.5i_x$ KVL for loop 1: $20V = 5\Omega \cdot i_x + 10\Omega \cdot i_r = 10i_x$, $i_x = 2A$ $\therefore V_t = v_{oc} = 10\Omega \cdot i_r = 5i_x = 10V$

(b) Circuit with a short circuit:

KVL for loop 2: $20V = 5\Omega \cdot i_x$, $i_x = 4A$, $\therefore I_n = i_{sc} = 0.5i_x = 2A$

$$R_t = \frac{v_{oc}}{i_{sc}} = \frac{10V}{2A} = 5\Omega$$

(c) Thévenin equivalent circuit

5. (a) $P = VI = I^2 R$, so the source power is $i_L^2 R_t$ and the load power is $i_L^2 R_L$.

