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1. (a)  

We can write the following expression for the resistance seen by the 2-V source. 
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The solutions to this equation are  2Ω=eqR and Ω−= 1 eqR . However, we reason 

that the resistance must be positive and discard the negative root. Then, we have 
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2. (a) 

Node voltage analysis: 
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Solving, we obtain Vvv 3021 =−  and Vvv 4032 −=−  

So the power supplied by each independent source is 
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(b) 
Mesh current analysis: 
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Solving, we obtain  and 01 =i Ai 22 =  
So the power supplied by each independent source is 
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3. Applying KVL to the circuit, we obtain .50)()()(
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For the capacitance, we have .
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In dc steady state, since the capacitance acts as an open circuit, the steady-state 

voltage across it is 50 V. That is, .50)( =tvCp  

 
Comparing Equation (1) with Equation 4.67 in the text, we find 
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Since we have ,1=ζ  this is the critically damped case. The roots are real and 
equal, and the complementary solution is 
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The complete solution is 
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The initial conditions are 
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Thus, we have 
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Solving them, we find 501 −=K  and  .105 5
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Finally, the solution is 
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4. Writing KVL equations around the meshes, we obtain 
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Solving, we obtain 
,54.80644.11 °∠=I  .20.74977.22 °∠=I  
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5. Using the voltage-division principle, we find .
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The input is ),2000cos(5)200cos(5)( tttvin ππ +=  
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 So the output in steady state conditions will be 
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6. (a) 

The all-pass network has the unique characteristic of unity gain at all frequencies 
and a frequency-dependent phase relationship between output and input. 
(b) 
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That is, the transfer function of the all-pass network must have a unity gain for 
all frequencies and a linear frequency-dependent phase. By that way, we can thus 
have a relationship as )()( 0τ−= tvtv inout  between output and input. 


