

P10.8* The approximate form of the Shockley Equation is $i_D = I_s \exp(v_D / nV_T)$. Taking the ratio of currents for two different voltages, we have

$$\frac{i_{D1}}{i_{D2}} = \frac{\exp(v_{D1} / nV_{T})}{\exp(v_{D2} / nV_{T})} = \exp[(v_{D1} - v_{D2}) / nV_{T}]$$

Solving for *n* we obtain:

$$n = \frac{V_{D1} - V_{D2}}{V_T \ln(i_{D1} / i_{D2})} = \frac{0.600 - 0.680}{0.026 \ln(1/10)} = 1.336$$

Then we have

$$I_{s} = \frac{I_{D1}}{\exp(v_{D1} / nV_{T})} = 3.150 \times 10^{-11} \text{ A}$$

P10.15^{*} (a) By symmetry, the current divides equally and we have $I_A = I_B = 100 \text{ mA}$

We have $i_{D} = I_{s} \left[\exp(\nu/nV_{T}) - 1 \right]$ $\cong I_{s} \exp(\nu/nV_{T})$

Solving for I_s , we obtain

(b)

$$I_{s} = \frac{i_{D}}{\exp(v/nV_{T})}$$

For diode A, the temperature is $T_A = 300$ K , and we have

$$V_{TA} = \frac{kT_A}{q} = \frac{1.38 \times 10^{-23} \times 300}{1.6 \times 10^{-19}} = 25.88 \text{ mV}$$
$$V_{sA} = \frac{0.100}{\exp(0.700/0.02588)} = 1.792 \times 10^{-13} \text{ A}$$

For diode *B*, we have T = 305 K, and $I_{sB} = 2I_{sA} = 3.583 \times 10^{-13}$ A $V_{TB} = 26.31$ mV

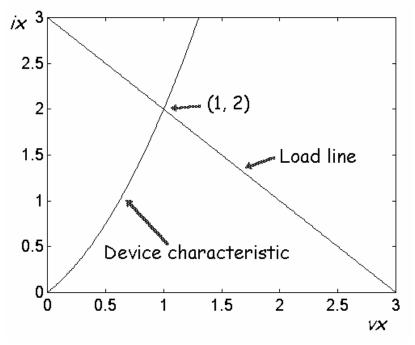
Applying Kirchhoff's current law, we have

$$0.2 = I_A + I_B$$

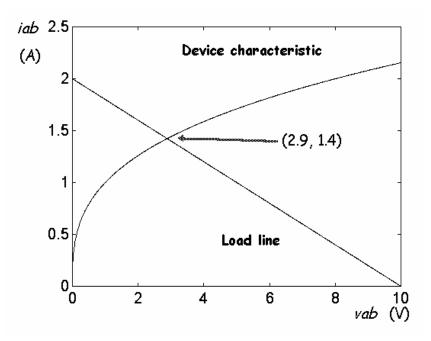
$$0.2 = (1.792 \times 10^{-13}) \exp(\nu/0.02588) + (3.583 \times 10^{-13}) \exp(\nu/0.02631)$$

Solving for ν by trial and err, we obtain $\nu \cong 697.1 \text{ mV}$, $I_A = 87 \text{ mA}$, and $I_B = 113 \text{ mA}$.

P10.19 The load-line equation is $V_s = R_s i_x + v_x$ Substituting values this becomes $3 = i_x + v_x$ Next we plot the nonlinear device characteristic equation $i_x = v_x + v_x^2$ and the load line on the same set of axes. Finally the solution is at the intersection of the load line and the characteristic as shown:



P10.29* The Thévenin resistance is $R_t = V_{oc} / I_{sc} = 10/2 = 5 \Omega$. Also the Thévenin voltage is $V_t = V_{oc} = 10$ V. The load line equation is $10 = 5i_{ab} + v_{ab}$. We plot the load line and nonlinear device characteristic and find the solution at the intersection as shown below.



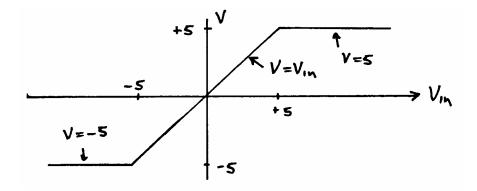
P10.32 (a) The diode is on, V = 0 and $I = \frac{10}{2700} = 3.70$ mA.

- (b) The diode is off, I = 0 and V = 10 V.
- (c) The diode is on, V = 0 and I = 0.
- (d) The diode is on, I = 5 mA and V = 5 V.

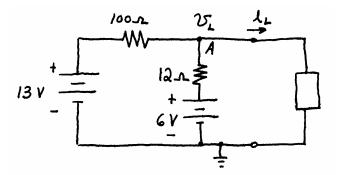
P10.34 (a) D_1 is on, D_2 is on, and D_3 is off. V = 7.5 volts and I = 0.

(b)	V_{in}	D_1	D_2	D_{3}	D_4	V	1
	0	on	on	on	on	0	0
	2	on	on	on	on	2 V	2 mA
	6	off	on	on	off	5 V	5 mA
	10	off	on	on	off	5 V	5 mA

The plot of V versus V_{in} is:



P10.41* For small values of i_L , the Zener diode is operating on line segment C of Figure 10.19, and the equivalent circuit is



Writing a KCL equation at node A, we obtain:

$$\frac{\nu_L - 13}{100} + \frac{\nu_L - 6}{12} + i_L = 0$$

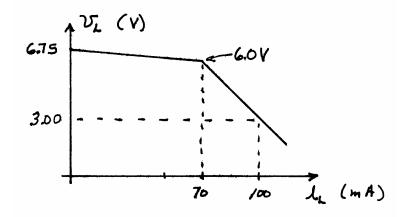
Solving we obtain

 $V_L = 6.75 - 10.71 i_L$

This equation is valid for $v_{L} \ge 6$ V. When $0 \le v_{L} \le 6$ V, the Zener diode operates on line segment *B*, for which the Zener is modeled as an open circuit and we have

 $v_{L} = 13 - 100i_{L}$

Plotting these equations results in

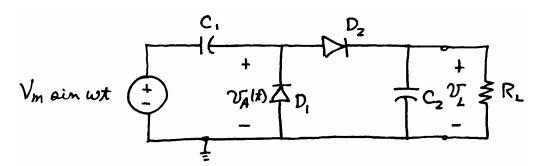


P10.51* For a half-wave rectifier, the capacitance required is given by Equation 10.10 in the text.

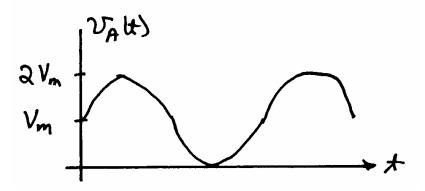
$$C = \frac{I_L T}{V_r} = \frac{0.25(1/60)}{0.2} = 20833 \ \mu F$$

For a full-wave rectifier, the capacitance is given by Equation 10.12 in the text:

$$C = \frac{I_{L}T}{2V_{r}} = \frac{0.25(1/60)}{2(0.2)} = 10416 \ \mu \text{F}$$

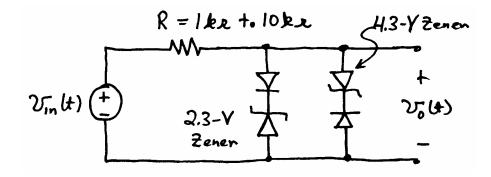


The capacitor C_1 and diode D_1 act as a clamp circuit that clamps the negative peak of $v_A(t)$ to zero. Thus, the waveform at point A is:



Diode D_2 and capacitor C_2 act as a half-wave peak rectifier. Thus, the voltage across R_L is the peak value of $v_A(t)$. Thus, $v_L(t) \cong 2V_m$. This is called a voltage-doubler circuit because the load voltage is twice the peak value of the ac input. The peak inverse voltage is $2V_m$ for both diodes.

P10.62* A suitable circuit is:

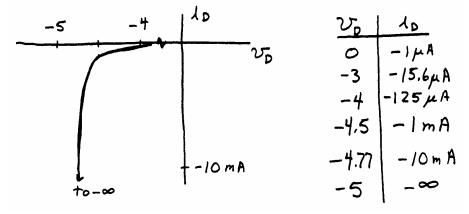


P10.61

P10.70 We are given

$$i_D = \frac{-10^{-6}}{(1 + v_D/5)^3}$$
 for $-5 \text{ V} < v_D < 0$

A plot of this is:



The dynamic resistance is:

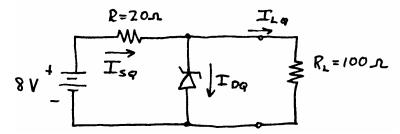
$$r_D = \left(\frac{di_D}{dv_D}\right)^{-1} = 1.67 \times 10^6 \times \left(1 + \frac{v_D}{5}\right)^4$$

To find the dynamic resistance at a given *Q*-point, we evaluate this expression for $V_D = V_{DQ}$.

For $I_{DQ} = -1.0$ mA, we have $V_{DQ} = -4.5$ V and $r_D = 167 \Omega$.

For $I_{DQ} = -10.0$ mA, we have $V_{DQ} = -4.77$ V and $r_D = 7.48 \Omega$.

P10.73* To find the *Q*-point, we ignore the ac ripple voltage and the circuit becomes:

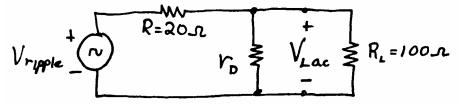


Thus, we have:

$$I_{sQ} = \frac{8-5}{20} = 150 \text{ mA}$$

 $I_{LQ} = 5/100 = 50 \text{ mA}$
 $I_{DQ} = I_{sQ} - I_{LQ} = 100 \text{ mA}$

The small-signal or ac equivalent circuit is:



where r_{D} is the dynamic resistance of the Zener diode. Using the voltage-division principle, the ripple voltage across the load is

$$V_{Lac} = V_{ripple} \times \frac{R_p}{R + R_p}$$

where $R_{\rho} = \frac{1}{1/R_{L} + 1/r_{D}}$ is the parallel combination of the load resistance

and the dynamic resistance of the diode. Substituting values, we find

$$V_{Lac} = 10 \times 10^{-3} = 1 \times \frac{R_p}{20 + R_p}$$

Solving, we find $R_p = 0.202 \ \Omega$. Then, we have:

$$R_{p} = 0.202 = \frac{1}{1/100 + 1/r_{D}}$$
 which yields $r_{D} = 0.202 \ \Omega$.