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1. Use various amplifier models to calculate
amplifier performance for given sources
and loads.

2. Compute amplifier efficiency.



. Understand the importance of input and output
Impedances of amplifiers.

. Determine the best type of ideal amplifier for
various applications.

. Specify the frequency-response requirements
for various amplifier applications.

. Understand linear and nonlinear distortion In
amplifiers.



/. Specify the pulse-response parameters of
amplifiers.

8. Work with differential amplifiers and specify
common-mode rejection requirements.

9. Understand the various sources of dc offsets
and design balancing circuits.
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BASIC AMPLIFIER
CONCEPTS

ldeally, an amplifier produces an output
signal with identical waveshape as the
iInput signal, but with a larger amplitude.

Vo (t) = AV, (t)
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(a) Input waveform (b) Output waveform of a noninverting amplifier

v, (1)

(c) Output waveform of an inverting amplifier

Figure 11.2 Input waveform and corresponding output waveforms.



Inverting versus Noninverting
Amplifiers

Inverting amplifiers have negative voltage
gain, and the output waveform is an
iInverted version of the input waveform.
Noninverting amplifiers have positive

voltage gain.
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Voltage-amplifier model

Model of an electronic amplifier, including input
resistance R; and output resistance R,.
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Figure 11.4 Source, amplifier, and load for Example 11.1.
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Figure 11.5 Cascade connection of two amplifiers.



CASCADED AMPLIFIERS
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Figure 11.6 Cascaded amplifiers of Examples 11.2 and 11.3.



Simplified Models for
Cascaded Amplifier Stages

First, determine the voltage gain of the first
stage accounting for loading by the second
stage.

The overall voltage gain Is the product of the
gains of the separate stages.

The input impedance is that of the first stage,
and the output impedance is that of the last
stage.
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Figure 11.7 Simplified model for the cascaded amplifiers of Figure 11.6.
See Example 11.3.
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Power supply

The power supply delivers power to the amplifier from sev-
eral dc voltage sources.



POWER SUPPLIES AND
EFFICIENCY
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lllustration of power flow.
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Amplifier of Example 11.4.
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Figure 11.11 Current-amplifier model.



Current-Amplifier Model
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Current-controlled
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A.. Is the current gain of the amplifier
with the output short circuited.
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Figure 11.12 Voltage amplifier of Examples 11.5, 11.6, and 11.7.
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Figure 11.13 Current-amplifier model equivalent to the voltage-amplifier
model of Figure 11.12.
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Figure 11.14 Transconductance-amplifier model.



Transconductance-Amplifier Model

Voltage-controlled
current source

Connect a short circuit across the output
terminals and analyze the circuit to determine
G
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Figure 11.15 Transconductance-amplifier equivalent to the voltage amplifier of
Figure 11.12. See Example 11.6.
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Figure 11.16 Transresistance-amplifier model.



Transresistance-Amplifier Model
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Open circuit the output terminals and
analyze the circuit to determine R,..
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Figure 11.17 Transresistance amplifier that is equivalent to the voltage amplifier
of Figure 11.12. See Example 11.7.
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Figure 11.18 If we want to sense the open-circuit voltage of a source, the
amplifier should have a high input resistance, as in (a). To sense the short-circuit
current of the source, low input resistance is called for, as in (b).



IMPORTANCE OF AMPLIFIER
IMPEDANCES IN VARIOUS
APPLICATIONS

Some applications call for amplifiers with high
iInput (or output) iImpedance while others call
for low Input (or output) Impedance.

Other applications call for amplifiers that have
specific input and/or output impedances.



_|_

=
R‘,r_ — L 3 N )
V2 N 77 N

If the amplifier output resistance R, is much less than the
(lowest) load resistance, the load voltage is nearly independent of the
number of switches closed.
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Figure 11.20 To avoid reflections, the amplifier input resistance R; should equal
the characteristic resistance Z of the transmission line.



Table 11.1.

Amplifier Input Output Gain
Type Impedance Impedance Parameter
Voltage @ 0 A oc
Current 0 00 Ajse
Transconductance o0 o0 G e
Transresistance 0 0 R,oc

The proper classification of a given
amplifier depends on the ranges of
source and load impedances with which
the amplifier is used.



FREQUENCY RESPONSE



Determining Complex Gain
v, (t) = 0.1cos(20007t — 30°)

v, (t)=10cos(20007t +15°)

A = V, 1015
V. 0.12-30°

=100£45
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(b) Dc-coupled amplifier

Figure 11.21 Gain magnitude versus frequency.
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Figure 11.22 Capacitive coupling prevents a dc input component from affecting
the first stage, dc voltages in the first stage from reaching the second stage, and
dc voltages in the second stage from reaching the load.
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Figure 11.23 Capacitance in parallel with the signal path and inductance in
series with the signal path reduce the gain in the high-frequency region.
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Figure 11.24 Gain versus frequency for a typical amplifier showing the upper
and lower half-power (3-dB) frequencies ( fy and f;)
and the half-power bandwidth B.
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Figure 11.25 Gain magnitude versus frequency for a bandpass amplifier.



LINEAR WAVEFORM
DISTORTION

If the gain of an amplifier has a different
magnitude for the various frequency
components of the input signal, a form of
distortion known as amplitude distortion

OCCuUrs.
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Figure 11.26 Linear amplitude distortion. See Example 11.9.



Phase Distortion

If the phase shift of an amplifier is not
proportional to frequency, phase
distortion occurs.
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Figure 11.27 Effect of amplifier phase response. See Example 11.10. [Note:

Input waveform has the same shape as v4(7).]



Requirements for
Distortionless Amplification

To avoid linear waveform distortion, an
amplifier should have constant gain magnitude
and a phase response that is linear versus
frequency for the range of frequencies
contained in the input signal.
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Figure 11.28 Linear distortion does not occur if the gain magnitude is constant

and the phase is proportional to frequency over the frequency
range of the input signal.
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Figure 11.29 Input pulse and the corresponding output of a typical
ac-coupled broadband amplifier.
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Figure 11.30 Rise time of the output pulse. (Note: No tilt is shown. When tilt is
present, some judgment is necessary to estimate the amplitude V;.)
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Figure 11.37 Gain versus frequency for an amplifier that displays pronounced
ringing in its pulse response. The frequency of the ringing is approximately f,.
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Figure 11.32 Pulse responses of ac-coupled amplifiers. 7' is the input pulse
duration, and t represents the shortest time constant of the coupling circuits.
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TRANSFER CHARACTERISTIC
AND NONLINEAR DISTORTION

The transfer characteristic is a plot of
Instantaneous output amplitude versus
iInstantaneous input amplitude.

Curvature of the transfer characteristic results
IN nonlinear distortion.



Ideal
amplifie\
v ——————7— \

Actual
amplifier

Figure 11.33 Transfer characteristics. A, = 10, 000.
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Figure 11.34 lllustration of input signal, amplifier transfer characteristic, and
output signal, showing clipping for large signal amplitude.



Harmonic Distortion

For a sinewave input, nonlinear distortion
produces output components having
frequencies that are integer multiples of the
Input 1‘re0|uency.vi (t) =V, cos(e,1)

v, (t) =V, +V, cos(w,t)+V, cos(2m,t)+V, cos(3m,t)+ -

V
D,=-%2 D,=-% D,=-%
V, V, V,



Total Harmonic Distortion (THD)

"otal harmonic distortion Is a specification
that indicates the degree of nonlinear
distortion produced by an amplifier.

D=,/D?+D2+D?+DZ2+---
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Figure 11.35 Differential amplifier with input sources.
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DIFFERENTIAL AMPLIFIERS

A differential amplifier has two input terminals:
an inverting input and a noninverting input.

|deally, a differential amplifier produces an

output that is proportional to the difference
between two input signals.

Vig = Vii = Vi, Vo = Advid
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Figure 11.36 The input sources v;; and v;, can be replaced by the equivalent
sources V;e, and v;y.



Common-mode Signal
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Figure 11.37 Electrocardiographs encounter large 60-Hz common-mode signals.



Common-Mode Rejection Ratio
Vo — Advid T Acmvicm

A

CMRR = 20 log ‘Ac ‘
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Figure 11.38 Setup for measurement of common-mode gain.
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Figure 11.39 Setup for measuring differential gain. A; = v, /v;4.
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Figure 11.40 Differential amplifier, including dc sources to account for the dc
output that exists even when the input signals are zero.



OFFSET VOLTAGE,
BIAS CURRENT, AND
OFFSET CURRENT




Real differential amplifiers suffer from
iImperfections that can be modeled by
several dc sources: two bias-current
sources, an offset current source, and an
offset voltage source. The effect of these
sources Is to add a (usually undesirable) dc
term to the ideal output.
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Figure 11.41 The effects of the bias-current sources cancel if R;; = Ry;.
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Figure 11.42 Amplifier of Example 11.13.

(c) All sources zeroed except V¢
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Figure 11.43 Network that can be adjusted to cancel the effects of
offset and bias sources.



Problem Set

e 413,17, 22, 25, 34, 40, 47, 55, 38, 6/, 68, 74,
78, 82.
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