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Chapter 5
Steady-State Sinusoidal Analysis

1. Identify the frequency, angular
frequency, peak value, rms value, and
phase of a sinusoidal signal.

2. Solve steady-state ac circuits using
phasors and complex impedances.



3. Compute power for steady-state ac
Circuits.

4. Find Thevenin and Norton equivalent
Circults.

5. Determine load impedances for
maximum power transfer.

6. Solve balanced three-phase circuits.
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Figure 5.1 A sinusoidal voltage waveform given by v(t) = V,, cos(wt + 6).
Note: Assuming that 6 is in degrees, we have f,,,x = % x T.
For the waveform shown, 8 is —45°. |
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SINUSOIDAL CURRENTS
AND VOLTAGES

V. Is the peak value

@ 1S the angular frequency in radians
per second

4 IS the phase angle

T Is the period



Frequency f =

1

I

27
Angular frequency @ = 7

w=2nf
sin(z) = cos(z —90°)



Root-Mean-Square Values
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RMS Value of a Sinusoid

The rms value for a sinusoid Is the peak
value divided by the square root of two.
This Is not true for other periodic
waveforms such as square waves or
triangular waves.
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Figure 5.2 Voltage and power versus time for Example 5.1.



Phasor Definition

Time function : v,(¢)=V, cos(w? +6,)

Phasor: V,=V,/0,



Adding Sinusoids Using Phasors

Step 1: Determine the phasor for each term.

Step 2: Add the phasors using complex
arithmetic.
Step 3: Convert the sum to polar form.

Step 4: Write the result as a time function.



Using Phasors to Add Sinusoids
v, (¢) = 20 cos(wr — 45°)

v, (¢)=10cos(er + 60°)

V, =20/ - 45°

V, =10/ - 30°



V.=V, +V,
=20/ — 45" +10/ - 30°
=14.14 — j14.14 + 8.660 — /5
= 23.06 - j19.14

=29.97//-39.7

v (r)=29.97 cos(er — 39.7°)
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Figure 5.4 A sinusoid can be represented as the real part of a vector rotating
counterclockwise in the complex plane.



Sinusoids can be visualized as the real-
axis projection of vectors rotating in the
complex plane. The phasor for a sinusoid
IS a snapshot of the corresponding
rotating vector att = 0.



Phase Relationships

To determine phase relationships from a
phasor diagram, consider the phasors to
rotate counterclockwise. Then when standing
at a fixed point, if V, arrives first followed by
V, after a rotation of # , we say that V, leads
V, by # . Alternatively, we could say that V,
lags V, by & . (Usually, we take ¢ as the
smaller angle between the two phasors.)



To determine phase relationships between
sinusoids from their plots versus time, find
the shortest time interval t; between positive
peaks of the two waveforms. Then, the
phase angle Is

¢ = (t,/T) x 360" If the peak of v,(t) occurs
first, we say that v, (t) leads v,(t) or that v,(t)
lags v,(t).
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Figure 5.5 Because the vectors rotate counterclockwise, v leads v, by 60° (or,
equivalently, v, lags v; by 60°.)
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Figure 5.6 The peaks of v{(7) occur 60° before the peaks of v,(7). In other
words, vi(t) leads v,(t) by 60°.
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(b) Current and voltage versus time

Figure 5.7 Current lags voltage by 90° in a pure inductance.
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COMPLEX IMPEDANCES

V, = joLx1,
/Z, = joL =wlL/90

VL :ZLIL
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(a) Phasor diagram (b) Current and voltage versus time

Figure 5.8 Current leads voltage by 90° in a pure capacitance.
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(a) Phasor diagram (b) Current and voltage versus time

Figure 5.9 For a pure resistance, current and voltage are in phase.
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V, =100/0°
> Al-=2/90°
Vi =100/0°
Ve =100/0° > >
YIL=2g—90° > I,=2/0°
(a) Exercise 5.6 (0.25 H inductance) (b) Exercise 5.7 (100 uF capacitance) (¢) Exercise 5.8 (50 € resistance)

Figure 5.10 Answers for Exercises 5.6, 5.7, and 5.8. The scale has been
expanded for the currents compared to the voltages so the
current phasors can be easily seen.



Kirchhoff’s Laws In Phasor
Form

We can apply KVL directly to phasors.
The sum of the phasor voltages equals
zero for any closed path.

The sum of the phasor currents entering a
node must equal the sum of the phasor
currents leaving.



Circuit Analysis Using
Phasors and Impedances

1. Replace the time descriptions of the
voltage and current sources with the
corresponding phasors. (All of the sources
must have the same frequency.)



2. Replace inductances by their complex
Impedances Z, = JeL. Replace
capacitances by their complex impedances
Z- = 1/( @ C). Resistances have impedances

equal to their resistances.

3. Analyze the circuit using any of the techniques
studied earlier in Chapter 2, performing the
calculations with complex arithmetic.
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Figure 5.11 Circuit for Example 5.3.
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Figure 5.12 Phasor diagram for Example 5.3.
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Figure 5.13 Circuit for Example 5.4.



Figure 5.14 Phasor diagram for Example 5.4.
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Figure 5.15 Circuit for Example 5.5.
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Figure 5.16 Circuit and phasor diagram for Exercise 5.9.
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Figure 5.17 Circuit for Exercise 5.10.
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Figure 5.18 Circuit for Exercise 5.11.
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Figure 5.19 A voltage source delivering power to a
load impedance Z = R + j X.
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Figure 5.20 Current, voltage, and power versus time for a purely resistive load.
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(a) Pure inductive load (b) Pure capacitive load

Figure 5.271 Current, voltage, and power versus time for
pure energy-storage elements.



AC Power Calculations

P — VrmS]rmS COS(H)
PF = cos(0)
=0 -0

Q — Vrms]rms Sin(g)




apparent power =V, [

rMsS= rms

P2 T Q2 — (Vrms]rms )2

2
2
P = ]rmsR P — Vers
R
O=12X 0 - V soms
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(a) Inductive load (6 positive) (b) Capacitive load (6 negative)

Figure 5.22 Power triangles for inductive and capacitive loads.
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Figure 5.23 The load impedance in the complex plane.
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Figure 5.24 Circuit and currents for Example 5.6.
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Figure 5.25 Circuit for Example 5.7.
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Figure 5.26 Power triangles for loads A and B of Example 5.7.
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Example 5.7.



Figure 5.28 Phasor diagram for Example 5.7.



O

Figure 5.29 The Thévenin equivalent for an ac circuit consists of a phasor voltage
source Vv, in series with a complex impedance Z;.



THEVENIN EQUIVALENT
CIRCUITS

O

Figure 5.29 The Thévenin equivalent for an ac circuit consists of a phasor voltage
source V; in series with a complex impedance Z;.



The Theévenin voltage is equal to the open-circuit
phasor voltage of the original circuit.

V, =V

[ OC

We can find the Thevenin impedance by zeroing
the independent sources and determining the
Impedance looking into the circuit terminals.



The Thévenin impedance equals the open-circuit
voltage divided by the short-circuit current.
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Figure 5.30 The Norton equivalent circuit consists of a phasor current source 1,
in parallel with the complex impedance Z,.
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Circuit of Example 5.9.

(¢) Circuit with a short circuit
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Figure 5.32 Thévenin and Norton equivalents for the circuit of Figure 5.31a.
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Figure 5.33 The Thévenin equivalent of a two-terminal circuit
delivering power to a load impedance.



Maximum Average Power
Transfer

If the load can take on any complex value,
maximum power transfer is attained for a load
Impedance equal to the complex conjugate of
the Thévenin impedance.

If the load Is required to be a pure
resistance, maximum power transfer Is
attained for a load resistance equal to the
magnitude of the Théevenin impedance.
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Figure 5.34 Thévenin equivalent circuit and loads of Example 5.10.
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Figure 5.35 Circuit of Exercises 5.14 and 5.15.



BALANCED THREE-PHASE
CIRCUITS

Much of the power used by business and

iIndustry Is supplied by three-phase
distribution systems. Plant engineers need to

be familiar with three-phase power.



(a) Three-phase source (b) Voltages versus time
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Figure 5.36 A balanced three-phase voltage source.



Phase Sequence

Three-phase sources can have either
a positive or negative phase

seguence,. _ .
The direction of rotation of certain

three-phase motors can be reversed
by changing the phase seguence.



Figure 5.37 A three-phase wye-wye connection with neutral.
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Wye—-Wye Connection

Three-phase sources and loads can be

connected either in a wye configuration or in a
delta configuration.

The key to understanding the various three-
phase

configurations Is a careful examination of the
wye—wye Circulit.
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Figure 5.38 Six wires are needed to connect three single-phase sources to three
loads. In a three-phase system, the same power transfer
can be accomplished with three wires.
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Figure 5.39 Phasor diagram showing the relationship between the line-to-line
voltage v,, and the line-to-neutral voltages v,, and v,,.
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draw the phasor diagram

Figure 5.40 Phasor diagram showing line-to-line voltages and
line-to-neutral voltages.
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(a) Circuit diagram (b) Phasor diagram

Figure 5.41 Circuit and phasor diagram for Example 5.11.
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Figure 5.42 Delta-connected three-phase source.
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(a) Wye-connected load (b) Delta-connected load

Figure 5.43 Loads can be either wye-connected or delta-connected.
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(a) Wye-connected load (b) Delta-connected load



Figure 5.44 A delta-connected source delivering power
to a delta-connected load.
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(b) Wye-connected equivalent circuit

Figure 5.45 Circuit of Example 5.12.
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