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1. Identify the frequency, angular 
frequency, peak value, rms  value, and 
phase of a sinusoidal signal.

2. Solve steady-state ac circuits using 
phasors and complex impedances.



4. Find Thévenin and Norton equivalent 
circuits.

5. Determine load impedances for 
maximum power transfer.

6. Solve balanced three-phase circuits.

3. Compute power for steady-state ac  
circuits.





SINUSOIDAL CURRENTS 
AND VOLTAGES

Vm is the peak value

ω is the angular frequency in radians 
per second

θ is the phase angle

T is the period
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Root-Mean-Square Values

( )dttv
T

V
T

2

0
rms

1
∫=

R
VP

2
rms

avg =

( )dtti
T

I
T

2

0
rms

1
∫=

RIP 2
rmsavg =



RMS Value of a Sinusoid
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The rms value for a sinusoid is the peak 
value divided by the square root of two. 
This is not true for other periodic 
waveforms such as square waves or 
triangular waves.





Phasor Definition
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Adding Sinusoids Using Phasors

Step 1: Determine the phasor for each term.

Step 2: Add the phasors using complex 
arithmetic.
Step 3: Convert the sum to polar form.

Step 4: Write the result as a time function.



Using Phasors to Add Sinusoids
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Sinusoids can be visualized as the real-
axis projection of vectors rotating in the 
complex plane. The phasor for a sinusoid 
is a snapshot of the corresponding 
rotating vector at t = 0.



Phase Relationships

To determine phase relationships from a 
phasor diagram, consider the phasors to 
rotate counterclockwise. Then when standing 
at a fixed point, if V1 arrives first followed by 
V2 after a rotation of θ , we say that V1 leads 
V2 by θ . Alternatively, we could say that V2
lags V1 by θ . (Usually, we take θ as the 
smaller angle between the two phasors.)



To determine phase relationships between 
sinusoids from their plots versus time, find 
the shortest time interval tp between positive 
peaks of the two waveforms. Then, the 
phase angle is
θ = (tp/T ) × 360°. If the peak of v1(t) occurs 
first, we say that v1(t) leads v2(t) or that v2(t)
lags v1(t).









COMPLEX IMPEDANCES
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Kirchhoff’s Laws in Phasor 
Form

We can apply KVL directly to phasors. 
The sum of the phasor voltages equals 
zero for any closed path.

The sum of the phasor currents entering a 
node must equal the sum of the phasor 
currents leaving.



Circuit Analysis Using 
Phasors and Impedances

1. Replace the time descriptions of the 
voltage and current sources with the 
corresponding phasors. (All of the sources 
must have the same frequency.)



2. Replace inductances by their complex
impedances ZL = jωL. Replace
capacitances by their complex impedances 
ZC = 1/(jωC). Resistances have impedances 
equal to their resistances.

3. Analyze the circuit using any of the techniques
studied earlier in Chapter 2, performing the 
calculations with complex arithmetic.

























AC Power Calculations
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THÉVENIN EQUIVALENT 
CIRCUITS



The Thévenin voltage is equal to the open-circuit 
phasor voltage of the original circuit.

ocVV =t

We can find the Thévenin impedance by zeroing 
the independent sources and determining the 
impedance looking into the circuit terminals.



The Thévenin impedance equals the open-circuit 
voltage divided by the short-circuit current.
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Maximum Average Power 
Transfer

If the load can take on any complex value, 
maximum power transfer is attained for a load 
impedance equal to the complex conjugate of 
the Thévenin impedance.

If the load is required to be a pure 
resistance, maximum power transfer is 
attained for a load resistance equal to the 
magnitude of the Thévenin impedance.







BALANCED THREE-PHASE 
CIRCUITS

Much of the power used by business and 
industry is supplied by three-phase 
distribution systems. Plant engineers need to 
be familiar with three-phase power.





Phase Sequence

Three-phase sources can have either 
a positive or negative phase 
sequence.
The direction of rotation of certain 
three-phase motors can be reversed 
by changing the phase sequence.





Wye–Wye Connection
Three-phase sources and loads can be 
connected either in a wye configuration or in a 
delta configuration.

The key to understanding the various three-
phase
configurations is a careful examination of the 
wye–wye circuit.
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