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Chapter 4 Transients

1. Solve first-order RC or RL circults.

2. Understand the concepts of transient
response and steady-state response.



3. Relate the transient response of first-order
circuits to the time constant.

4. Solve RLC circuits in dc steady-state
conditions.

5. Solve second-order circuits.
6. Relate the step response of a second-order

system to its natural frequency and damping
ratio.



Transients

The time-varying currents and voltages
resulting from the sudden application of
sources, usually due to switching, are
called transients. By writing circuit
equations, we obtain integrodifferential
equations.
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Capacitance charged to V,
priorto t =0

(a) Electrical circuit (b) Fluid-flow analogy: a filled water tank
discharging through a small pipe

A capacitance discharging through a resistance and its fluid-
flow analogy. The capacitor is charged to V; prior to t+ = 0 (by circuitry
that is not shown). At ¢+ = 0, the switch closes and the capacitor dis-
charges through the resistor.



Discharge of a Capacitance
through a Resistance

. dvgt(t) : VCR(t) 0 v ()

RC dvgt(t) v (t)=0  RCKse™ + Ke™ =0



v.(0+)=V,

Ve (t) = Vie_t/RC
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Voltage versus time for the circuit of Fig-
ure 4.1(a). When the switch is closed, the voltage
across the capacitor decays exponentially to zero.
At one time constant, the voltage is equal to 36.8

percent of its initial value.



The time interval 7 = RC iIs called
the time constant of the circuit.

Ve (t) = Vs _Vse_t/T



Capacitance charging v+ R
through a resistance. The switch S\ - C T~ vel)

closes at r = 0, connecting the dc —
source V, to the circuit.
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The charging transient for the RC
circuit of Figure 4.3.

(Refer to p.151 and p.152.)



DC STEADY STATE

The steps in determining the forced response
for RLC circuits with dc sources are:

1. Replace capacitances with open circuits.

2. Replace inductances with short circuits.

3. Solve the remaining circuit.
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(a) Original circuit (b) Equivalent circuit for steady state

Figure 4.5 The circuit and its dc steady-state equivalent for Example 4.1,
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Figure 4.6 Circuits for Exercise 4.3.



RL CIRCUITS

The steps involved In solving
simple circuits containing dc
sources, resistances, and one
energy-storage element
(iInductance or capacitance) are:



1. Apply Kirchhoff’s current and voltage
laws to write the circuit equation.

2. If the equation contains integrals,
differentiate each term in the equation
to produce a pure differential equation.

3. Assume a solution of the form K, +
K,est.



4. Substitute the solution into the
differential equation to determine the
values of K, and s . (Alternatively, we
can determine K, by solving the circuit

INn steady state as discussed In Section
4.2.)

5. Use the Initial conditions to determine
the value of K..

6. Write the final solution.
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Figure 4.7 The circuit analyzed in Example 4.2.
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Figure 4.8 Current and voltage versus time for the circuit of Figure 4.7.



RL Transient Analysis

i(t)=2+K,e ™"

Time constant IS
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Figure 4.9 The circuit analyzed in Example 4.3.
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The current and voltage for the circuit of Figure 4.9.
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Figure 4.11 The circuit for Exercise 4.5.
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Figure 4.12 The circuit for Exercise 4.6.
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Figure 4.13 A circuit consisting of sources, resistances, and one inductance has
an equivalent circuit consisting of a voltage source and a resistance
in series with the inductance.
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RC AND RL CIRCUITS WITH
GENERAL SOURCES

The general solution consists
of two parts.



The particular solution (also called the
forced response) Is any expression that
satisfies the equation.

In order to have a solution that satisfies
the initial conditions, we must add the
complementary solution to the
particular solution.



The homogeneous eguation is
obtained by setting the forcing
function to zero.

The complementary solution (also
called the natural response) Is
obtained by solving the
homogeneous equation.



Step-by-Step Solution

Circuits containing a resistance, a source,
and an inductance (or a capacitance)

1. Write the circuit equation and reduce it to a
first-order differential equation.



2. Find a particular solution. The details of
this step depend on the form of the forcing
function. We lillustrate several types of
forcing functions in examples, exercises,
and problems.

3. Obtain the complete solution by adding
the particular solution to the complementary
solution given by Equation 4.44, which
contains the arbitrary constant K.

4. Use Initial conditions to find the value of
K.
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Figure 4.14 A first-order RC circuit with a sinusoidal source. See Example 4.4.

(Refer to equation (4.48))
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Figure 4.15 The voltages and currents for the circuit of Figure 4.14
immediately after the switch closes.
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Figure 4.16 The complementary solution and the particular
solution for Example 4.4.
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Figure 4.17 The complete solution for Example 4.4.
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Figure 4.18 The circuit for Exercise 4.7.
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Figure 4.19 The circuit for Exercise 4.8.
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Figure 4.20 The series RLC circuit and its mechanical analog.



SECOND-ORDER CIRCUITS
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Damping coefficient Undamped resonant frequency
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(a) Electrical circuit







1. Overdamped case (> 1).If &£ >1 (or
equivalently, If «# > @), the roots of the
characteristic equation are real and distinct.

Then the complementary solution is
X (t)= K.e* + K,e*

In this case, we say that the circuit Is
overdamped.



2. Critically damped case (£ =1).If /=1
(or equivalently, If # = @), ), the roots are
real and equal. Then the complementary
solution Is

X, (t)= Ke™ + K, te™

In this case, we say that the circuit Is
critically damped.



3. Underdamped case ( £ < 1). Finally, if &
<1 (or equivalently, if # < @),), the roots
are complex. (By the term complex, we
mean that the roots involve the square root
of —1.) In other words, the roots are of the

form _ _
S, =—a+ Jw ands, =—a— o,

iIn which | is the square root of —1 and
the natural frequency Is given by

_ 2 2
wn—on—a



In electrical engineering, we use |
rather than 1 to stand for square root of -1,
because we use | for current.

For complex roots, the complementary

solution Is of the form

X, (t)= K,e ™ cos(w, t)

K,e  sin(m, t)

In this case, we say that the circuit Is

underdamped.
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Figure 4.21 The circuit for Example 4.5.



Figure 4.22 The equivalent circuit for Figure 4.27 under steady-state conditions.
The inductor has been replaced by a short circuit and
the capacitor by an open circuit.
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Figure 4.23 Solution for R = 300 2.

(See text book for solution, particularly on the 1.c.)
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Figure 4.24 Solution for R = 200 £2.
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Figure 4.25 Solution for R = 100 €2.
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Figure 4.26 Solutions for all three resistances.
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Figure 4.27 A unit step function u(t). Fort <0, u(t) =0. Fort >0, u(t) = 1.
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Figure 4.28 Applying a dc voltage by closing a switch results in a forcing
function that is a step function.
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Figure 4.29 Normalized step responses for second-order systems described by
Equation 4.99 with damping ratios of ¢ = 0.1, 0.5, 1, 2, and 3. The initial
conditions are assumed to be x(0) = 0 and x’(0) = 0.
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Figure 4.30 Any circuit consisting of sources, resistances, and a parallel LC
combination can be reduced to the equivalent circuit shown in (b).
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Figure 4.31 Circuit for Exercises 4.9, 4.10, and 4.11.

(Dual of the series circuit)




Problem Set

e 4,7,15, 21, 30, 35, 37, 45, 48
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