Chapter 2: Resistive Circuits



Resistive Circults

1. Solve circuits (I.e., find currents and
voltages of interest) by combining
resistances in series and parallel.

2. Apply the voltage-division and current-
division principles.

3. Solve circuits by the node-voltage
technique.



4. Solve circuits by the mesh-current
technique.

5. Find Thévenin and Norton equivalents
and apply source transformations.

6. Apply the superposition principle.

/. Draw the circuit diagram and state the
principles of operation for the Wheatstone
bridge.
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Figure 2.7 Series resistances can be combined into an equivalent resistance.
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(a) Three resistances in parallel (b) Equivalent resistance

Figure 2.2 Parallel resistances can be combined into an equivalent resistance.



(a) Original network (b) Network after replacing R; and
R, by their equivalent resistance
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(c) Network after replacing R, and (d) Combining R, and R, in series yields
Ry by their equivalent the equivalent resistance of the entire
network

Figure 2.3 Resistive network for Example 2.1.
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Figure 2.4 Resistive networks for Exercise 2.1.
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Circuit Analysis using
Series/Parallel Equivalents

Begin by locating a combination of
resistances that are in series or
parallel. Often the place to start is
farthest from the source.

Redraw the circuit with the equivalent
resistance for the combination found In
step 1.



3. Repeat steps 1 and 2 until the circuit Is
reduced as far as possible. Often (but
not always) we end up with a single
source and a single resistance.

4. Solve for the currents and voltages Iin
the final equivalent circuit.
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Figure 2.5 A circuit and its simplified versions. See Example 2.2.
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(a) Third, we use known values of i; and ¢,
to solve for the remaining currents and voltages
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(b) Second, we find v, =R i; =60V (c¢) First, we solve fori; = — =3 A
e

After reducing the circuit to a source and an equivalent resistance, we

solve the simplified circuit. Then, we transfer results back to the original circuit.
Notice that the logical flow in solving for currents and voltages starts from the sim-

plified circuit in (c).



i,=2A

AN ——s .
— ‘Liz iig \Lidr
|
”s‘zOVC_) 20§z§ 30 Q 40 Q
L L4
(a)
I 4
Ji ) W9
10 Q ‘
=30V R2=§
R,= - 40 Q
10 Q
®
(b) (©)

Figure 2.7 Circuits for Exercise 2.2.
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Figure 2.8 Circuit used to derive the voltage-division principle.



Voltage Division
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Figure 2.9 Circuit for Example 2.3.



Application of the Voltage-
Division Principle
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Figure 2.10 Circuit used to derive the current-division principle.



Current Division
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(a) Original circuit (b) Equivalent circuit obtained by
combining R, and Ry

Figure 2.11 Circuit for Example 2.4.
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(b) Circuit after combining R, and R;

Figure 2.12 Circuit for Example 2.5.



Application of the Current-
Division Principle
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Figure 2.14 Circuits for Exercise 2.3.
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Figure 2.15 Circuits for Exercise 2.4.
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Although they are very
iImportant concepts,
series/parallel equivalents and
the current/voltage division
principles are not sufficient to
solve all circuits.



Node Voltage Analysis
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Figure 2.16 The first step in node analysis is to select a reference node and label
the voltages at each of the other nodes.
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Figure 2.17 Assuming that we can determine the node voltages vy, v», and vs,
we can use KVL to determine v,, v,, and v,. Then using Ohm'’s law, we can find
the current in each of the resistances. Thus, the key problem is in determining the

node voltages.



Writing KCL Equations in Terms
of the Node Voltages for Figure
2.16




Figure 2.18 Circuit for Example 2.6.






Figure 2.19 Circuit for Exercise 2.6.
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Figure 2.20 Circuit for Example 2.7.
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Figure 2.27 Circuit for Example 2.8.
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Figure 2.22 Circuit for Exercise 2.8.
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Figure 2.23 Circuit of Example 2.8 with a different choice for the reference node.
See Exercise 2.9.
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Figure 2.24 A supernode is formed by drawing a dashed line enclosing several
nodes and any elements connected between them.
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Circuits with Voltage Sources

We obtain dependent

equations If we use all of the
nodes In a network to write
KCL equations.



v, v,—(-15) v, v,—(-15)
1 4+ 1 4+ 2 4+ 2 =0
R, R, R, R,
R,
Supernode \’ MA, /— Supernode
pau ~ ~ \"\\
/ 10V o, \\ R, 7 .
[ / _ \
\ mo—@ ——MW\N—F—0v;=-15V
ST i / |
/ <_> 5 /
R R / 15V
e al e
f/ /
[ ‘ d
\ — 7



Rzg\vl Uz/(gR )15V
A +
1

Figure 2.25 Node voltages vy and v; and the 10-V source form a closed loop to
which KVL can be applied. (This is the same circuit as that of Figure 2.24.)




Figure 2.26 Circuit for Exercise 2.11.
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Node-Voltage Analysis with a
Dependent Source

First, we write KCL equations at
each node, including the current of
the controlled source just as If it
were an ordinary current source.
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Figure 2.27 Circuit containing a current-controlled current source.
See Example 2.9.
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Next, we find an expression for the
controlling variable I, in terms of the
node voltages.




Substitution yields




Figure 2.28 Circuit containing a voltage-controlled voltage source.
See Example 2.10.



Node-Voltage Analysis

1. Select a reference node and assign
variables for the unknown node
voltages. If the reference node Is
chosen at one end of an
Independent voltage source, one
node voltage is known at the start,
and fewer need to be computed.



2. Write network equations. First, use KCL
to write current equations for nodes
and supernodes. Write as many current
eguations as you can without using all
of the nodes. Then If you do not have
enough equations because of voltage
sources connected between nodes, use
KVL to write additional equations.



3. If the circuit contains dependent
sources, find expressions for the
controlling variables in terms of the
node voltages. Substitute into the
network equations, and obtain
eguations having only the node
voltages as unknowns.



4. Put the equations into standard form
and solve for the node voltages.

5. Use the values found for the node
voltages to calculate any other currents
or voltages of interest.
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Figure 2.29 Circuits for Exercise 2.12.
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Figure 2.30 Circuits for Exercise 2.13.



Mesh Current Analysis
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(a) Circuit with branch currents (b) Circuit with mesh currents

Figure 2.31 Circuit for illustrating the mesh-current method of circuit analysis.



Choosing the Mesh Currents

When several mesh currents flow through
one element, we consider the current In
that element to be the algebraic sum of
the mesh currents.

Sometimes 1t Is said that the mesh

currents are defined by “soaping the
window panes.”
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Figure 2.32 Two circuits and their mesh-current variables.



Writing Equations to Solve for
Mesh Currents

If a network contains only resistances
and independent voltage sources, we
can write

the required equations by following each
current around its mesh and applying
KVL.



Using this pattern for mesh 1 of Figure
2.32(a), we have

RZ(il _is)+ RS(il _iZ)_VA =0

For mesh 2, we obtain
R, (i, —i, )+ R,i, +v, =0

For mesh 3, we have
R, (i —i, )+ Rji, —v, =0



In Figure 2.32(b)

R1i1 T RZ(il N i4)+ R4(i1 _iZ)_VA =0

Rsiz + R4(i2 o il)+ R6(i2 _ is) 0

R7i3 + Re(is _ i2)+ Rs(is _ i4) 0

R3i4 + Rz(i4 o i1)+ Rs(i4 - is): 0
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Figure 2.33 Circuit of Example 2.12.
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Figure 2.34 Circuit of Exercise 2.16.



Mesh Currents in Circuits
Containing Current Sources

A common mistake made by beginning
students Is to assume that the voltages
across current sources are zero. In
Figure 2.35, we have:

i, =2A
10(1, —1,)+51, +10=0
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Figure 2.35 In this circuit, we have i{ = 2 A.
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Figure 2.36 A circuit with a current source common to two meshes.




Combine meshes 1 and 2 into a supermesh. In other
words, we write a KVL equation around the periphery of
meshes 1 and 2 combined.

i, +2(i,—i,)+4(i, —i,)+10=0
Mesh 3:

3i, +4(i, —i,)+2(i, —i,) =0

i, —i, =5
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Figure 2.37 The circuit for Exercise 2.18.
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Figure 2.38 The circuit for Exercise 2.19.
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Figure 2.39 A circuit with a voltage-controlled current source. See Example 2.13.
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Mesh-Current Analysis

1. If necessary, redraw the network
without crossing conductors or elements.
Then define the mesh currents flowing
around each of the open areas defined
by the network. For consistency, we
usually select a clockwise direction for
each of the mesh currents, but this Is not
a reguirement.



2. Write network eqguations, stopping after
the number of equations Is equal to the
number of mesh currents. First, use KVL
to write voltage equations for meshes that
do not contain current sources. Next, If
any current sources are present, write
expressions for their currents In terms of
the mesh currents. Finally, if a current
source Is common to two meshes, write a
KVL equation for the supermesh.



3. If the circuit contains dependent
sources, find expressions for the
controlling variables in terms of the
mesh currents. Substitute into the
network equations, and obtain
equations having only the mesh
currents as unknowns.



4. Put the equations into standard form.
Solve for the mesh currents by use of
determinants or other means.

5. Use the values found for the mesh
currents to calculate any other currents
or voltages of interest.



Thévenin Equivalent Circuits
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Figure 2.40 A two-terminal circuit consisting of resistances and sources can be
replaced by a Thévenin equivalent circuit.



Figure 2.47 Thévenin equivalent circuit with open-circuited terminals. The
open-circuit voltage v, is equal to the Thévenin voltage V.
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Figure 2.42 Thévenin equivalent circuit with short-circuited terminals. The
short-circuit current is is. = V;/R;.



Thévenin Equivalent Circuits
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(a) Original circuit (b) Analysis with an open circuit
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(¢) Analysis with a short circuit

Figure 2.43 Circuit for Example 2.14.

(d) Thévenin equivalent
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Figure 2.44 Circuit for Exercise 2.22.



Finding the Thévenin Resistance
Directly

When zeroing a voltage source, it becomes a
short circuit. When zeroing a current source,
It becomes an open circuit.

We can find the Thévenin resistance by
zeroing the sources in the original network
and then computing the resistance between
the terminals.
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(a) Thévenin equivalent (b) Thévenin equivalent with its

source zeroed

Figure 2.45 When the source is zeroed, the resistance seen from the circuit
terminals is equal to the Thévenin resistance.
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(¢) Circuit with a short circuit

(d) Thévenin equivalent circuit

Figure 2.46 Circuit for Example 2.15.
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Figure 2.47 Circuits for Exercise 2.24.
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Figure 2.48 Circuit for Example 2.16.
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Figure 2.49 The Norton equivalent circuit consists of an independent current
source I, in parallel with the Thévenin resistance R,.
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Figure 2.50 The Norton equivalent circuit with a short circuit across its terminals.
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Step-by-step Théevenin/Norton-
Equivalent-Circuit Analysis

1. Perform two of these:
a. Determine the open-circuit voltage V, = v,..

b. Determine the short-circuit current | =

-

c. Zero the sources and find the Thevenin
resistance R, looking back into the
terminals.



2. Use the equation V, = R, |_ to compute
the remaining value.

3. The Thévenin equivalent consists of a
voltage source V, in series with R, .

4. The Norton equivalent consists of a
current source |, in parallel with R, .
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(b) Circuit with a short circuit (c) Norton equivalent circuit

Figure 2.51 Circuit of Example 2.17.
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Figure 2.52 Circuits for Exercise 2.25.



Source Transformations

O b o O b

Figure 2.53 A voltage source in series with a resistance is externally equivalent to
a current source in parallel with the resistance, provided that I, = V,/R,.
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(¢) Circuit after transforming the voltage
source into a current source

Figure 2.54 Circuit for Example 2.18.



Figure 2.55 Circuit for Exercise 2.26.
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Maximum Power Transfer

The load resistance that absorbs the
maximum power from a two-terminal

circuit is equal to the Thévenin
resistance.
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(a) Original circuit with load (b) Thévenin equivalent circuit

with load

Figure 2.56 Circuits for analysis of maximum power transfer.
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Figure 2.57 Circuit for Example 2.19.



SUPERPOSITION PRINCIPLE

The superposition principle states
that the total response Is the sum of
the responses to each of the
Independent sources acting
individually. In equation form, this is

=0+ ++FT

n
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Figure 2.58 Circuit used to illustrate the superposition principle.




Figure 2.59 A resistance that obeys Ohm’s law is linear.
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(¢) Circuit with only the current
source active

Figure 2.60 Circuit for Example 2.20 and Exercise 2.27.
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Figure 2.61 Circuit for Exercise 2.28.
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Detector

Figure 2.62 The Wheatstone bridge. When the Wheatstone bridge is balanced,
i, =0and v, =0.



WHEATSTONE BRIDGE

The Wheatstone bridge is used by mechanical
and civil engineers to measure the resistances
of strain gauges In experimental stress studies
of machines and buildings.

R
Rx =—=R o, (7
Rl 3 C)

Detector




Problem Set

1,12, 24, 36, 39, 51, 61, 72, /5, 85, 87
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