Chapter 12 Fourier Series Analysis

12.1 Periodic waveforms and Fourier series

A function f'(¢) is periodic if there exists some repetition interval 7

suchthat f(t—T)= f(?).
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Three properties:
v Fundamental period T f(t+mT)= f(t),m=1,23,---.

v A periodic waveform theoretically continues for all time.
ot pde=ty T f@ar
1 2

jrf(@O)dt=gl; T r(t)dt.

Fundamental frequency: Q=2T10/T .
Trigonometric Fourier series:

[00)
f(@)= ot 2 (an cosnQt +bn sinnQt) .
n=1
Dirichlet's conditions must be satisfied for a "well-behaved" periodic
function being represented by the Fourier series. The conditions are:
v Single valued.
v" Finite number of maxima, minima and discontinuities per period.

v The integral [7|f(¢)| must be finite.
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(h) f5(t) = 3 sin Qf + sin 3 Figure 12.2.
- Orthogonality:

- The coefficients can be found based on the following procedures:
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Example 12.1:

A

Half-Rectified Sine Wave
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(a) First— and second—harmonic components
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(¢) Sum of terms through the sixth harmonic

Figure 12.4.

‘Figure 12.3.
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- Exponential Fourier series:

o nQt - jnQt ©  jnQt
f(t)=co+ S (cnejn te_ e Jn )= chejn :
n=1 n=-—00

- Orthogonality:

- Exponential series vs. trigonometric series (n=1):

a, = 2Re[cn].
bn =-2 Im[cn].

<, =1/2(an —jbn).
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n Figure 12.6.
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Example 12.2: Sinusoidal Waveform
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Example 12.3: Exponential Series Coefficients

- Even symmetry: f(—t)= f(?).
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(a) Rectangular pulse train (b) Triangular wave Fl gure 1 2 . 8 .
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- Odd symmetry: f(-t)=—f(t).
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- Multiplying two functions having the same symmetry results in a
function with even symmetry. Multiplying two functions having
opposite symmetry results in a function with odd symmetry.

Example 12.4: Rectangular Pulse Train
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12.2 Spectral analysis of periodic waveforms

- Line spectra: frequency, amplitude and phase.

. Amplitude
Amplitude 10 p
7 7
4 5 5
| I° I°
0 3 8 (2] -8 -3 0 3 8 o
Phase 90° Phase
o 300
0 1 | 1
| © 30l 0 | o
~90 -90°
(a) One-sided line spectrum (b) Two-sided line spectrum Fl gure 12. ]_ ]_ .

Example 12.5: Spectrum of a Rectangular Pulse Train
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- Time and frequency relations
1) - cf(nQ), g(t) - cg(nQ), z(t) & cZ(nQ).

v"  Linear combination:

v" Time shift:

Figure 12.14.
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Origin shift:

v Half-wave symmetry:
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(b) Positive portion of waveform

Example 12.6: Waveform with Half-Wave Symmetry
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stia (Figure 12.16.
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- Differentiation and integration:

Example 12.7: Triangular Pulse Train
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z'(t)
AT
-T/4 0 T4 3T/4 T 5Ti4 ¢
-4/T
(b) Time derivative
le,(rQ)l
1 2 1 1 1 x
Q 4Q 8Q @
(a)
le,(nQ)l
| I I 1 [
0 Q 4Q 8Q @
(b)

Figure 12.18.
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12.3 Spectral circuit analysis

- Based on superposition for linear circuits, spectral circuit analysis
extends ac steady-state analysis to the more general case of an
arbitrary periodic excitation.

- Periodic steady-state response: For a stable network, the steady state
response (i.e., after the transients have died away) can be found based
on the network's frequency response. Note that the components with
amplitude less than 10% of the largest output amplitude can be
ignored with the remaining terms constituting a reasonable
approximation.
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Example 12.8 Harmonic Generator
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Figure 12.19.

Figure 12.10.

Example 12.9: Improved Harmonic Generator
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- Waveform distortion: the output waveform may be significantly
different from the input waveform due to distortion. Linear distortion
includes amplitude distortion (i.e., amplitude of the frequency
response is not a constant) and delay distortion (i.e., nonlinear phase).
Nonlinear distortion introduces additional harmonics.

- Distortionless reproduction:
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(c) Low frequencies removed Figure 1221 .
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Example 12.10: Distortion by a Lowpass Filter

- Equalization: Linear waveform distortion can be reduced by another
network called equalizer.

Distorting network Equalizer
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° ? ? Figure 12.23.
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Example 12.11: Equalization of a Distorted Pulse Train
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(b) Waveform with equalization Figure 12.24.
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(b) Equalized and unequalized amplitude ratios
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(¢) Amplitude ratio of equalizer Flgure 12 25 .
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