Chapter 11 Frequency Response and Filters
11.1 Frequency response

· Frequency response is the forced response of a circuit to a sinusoid ac waveform of a particular frequency. Amplitude ratio and phase shift are typically used to characterize frequency response.

· Transfer function 
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· Amplitude ratio: 
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· Phase shift: 
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· Superposition for waveforms at different frequencies):

Example 11.1: A frequency-Selective Network
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Figure 11.1.

· Frequency response curves: plots of amplitude ratio and phase shift vs. frequency. They can be obtained by analytical method or graphical method.

Example 11.2: An All-Pass Network
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Figure 11.2.

Example 11.3: Frequency-Response Calculations
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Figure 11.3.
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Figure 11.4.

11.2 Filters

· Filters are frequency-selective networks that pass certain frequencies but suppress/reject the others.

· Four common categories: lowpass, highpass, bandpass and notch.

· A positive gain constant K is assumed.

· Ideal lowpass filter, ideal highpass filter, cutoff frequency, passband and stop band.
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Figure 11.5.

· First-order lowpass filter:
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Figure 11.6.

· First-order highpass filter:
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Figure 11.7.

· First-order filter networks:
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Figure 11.8.

Example 11.4: Parallel Filter Network
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Figure 11.9.

Example 11.5: Design of a Lowpass Filter
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Figure 11.10.

· Ideal bandpass filter, ideal notch filter (band-reject filter), lower cutoff frequency, upper cutoff frequency and bandwidth.
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Figure 11.11.

· Second order bandpass filter and quality factor.
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Figure 11.12.
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Figure 11.13.
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Figure 11.14.

· Second-order notch filter.
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Figure 11.16.

· Resonant circuits for bandpass and notch filters.
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Figure 11.17.

· Winding resistance.
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Figure 11.18.

Example 11.6: Design of a Bandpass Filter

11.3 Op-Amp filter circuits

· Op-amps are included in filter circuit design to avoid loading effects and to eliminate the need for inductors in bandpass and notch filters.

· Noninverting lowpass and highpass filters:
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Figure 11.19.

· Inverting lowpass and highpass filters:
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Figure 11.20.

· Wideband bandpass filters:
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Figure 11.21.

· Narrowband bandpass filters:
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Figure 11.22.

· Notch filters:

[image: image26.png]Yin

2C

T ]

(a) Twin-tee network with an op-amp

Yout

Rp=(u- 1R,

N

1 1
< l e R/2

¢ ¢ o V3

141

R Vv, R uv3
N _T_ N < : >

1

s2C

+—o ‘_/out

i

(b) s-domain diggram



(Figure 10.8.)

Example 11.7: Design of an Active Filter

11.4 Bode plots

· Amplitude ratio and frequency are converted to a logarithmic scale.

· Factored functions and decibels:
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· First-order factors (ramp function, highpass function and lowpass function).

· Ramp function:
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Figure 11.23.

· Highpass function:
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Figure 11.24.

· Lowpass function:
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Figure 11.25.

Example An Illustrative Bode Plot
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Figure 11.26.

· Products of first-order factors: Bode plots of any transfer functions consisting entirely of first-order factors and powers of first-order factors can be constructed using the additive property of gain and phase. The important elements include: break frequencies, asymptotic gain and phase using straight line approximations and constants 
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Example 11.9: Frequency Response of a Bandpass Amplifier
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Figure 11.27.
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Figure 11.28.

· Quadratic factors for complex-conjugate poles:
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Figure 11.29.
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Figure 11.30.

Example 11.10: Bode Plot of a Narrowband Filter
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Figure 11.31.

11.5 Frequency response design

· Given a required frequency response, the transfer function can be found by starting from the Bode plot. First, a straight line approximation needs to be obtained. Second, the straight line approximation can be decomposed to a constant term and a set of first-order functions (assuming no resonant peaks or peaks are present). Finally, we can apply the basic op-amp networks to realize the transfer function.

Example 11.11: Design of an FM Pre-emphasis Network

[image: image42.png]g1(w)

glw) +20 dB/decade
+18 dB —
0dB
| w1
|
| go(w)
_ | W
6 dB | 0dB
|
|

—20 dB/decade

(@) Cain curve for PV premphasis (b) Asymptotic plots



Figure 11.33.

11.6 Butterworth filters

· Two trade-offs in filter design: performance vs. complexity and rejection vs. ripple. Will only cover Butterworth lowpass and highpass filters.

· Butterworth lowpass filters: maximally flat, poles are uniformly spaced by angle of 1800/n (n is the order), rolloff at 20n dB per decade.

[image: image43.png]


Figure 11.36.
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Figure 11.37.
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Figure 11.38.
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Example 11.12: FM Stereo Separation Filter
· Butterworth highpass filters can be derived from existing lowpass designs via the lowpass-to-highpass transformation: 
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Figure 11.40.

· Op-amps can be used to realize Butterworth filters such that inductors and loading effects can be eliminated.

· Op-amp circuits for second-order transfer functions are shown in Figure 11.41.
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Figure 11.41.

Example 11.13: Op-Amp Circuit for a Lowpass Filter
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Figure 11.42.
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