Chapter 10 Network Functions and s-Domain Analysis

10.1 Complex frequency and generalized impedance

- Complex frequency: oscillating voltages or currents with exponential

amplitudes.

ot - X
x(t) = Xme cos(wr +q0x) = ReDXme
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- Complex frequency: s=0+ jw.

- Phasor: X=X U =X ej(px.
m-Tx m

Example 10.1: A Complex-Frequency Waveform

- For a “real” frequency, we have

N — — [
i(t)= Im cos(wx +§01.) = Re%e] g

— — ¥ [
v(t) = Vm cos(ax + qov) = Reé[e] o

- v=v O¢ . I1=1 D¢,

- For a “complex” frequency, we replace jw with s.

or J@+9)
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- i(t)=Re eStD:]meatcos(ax+§0i).

B
— St - ot
- v(t)=Red/e g Vme cos(ax + (pv) :

- Generalized impedance: Z(s)=V/I,or V=Z(s)I.

- Generalized admittance: Y(s)=1/Z(s)=1/V,or I=Y(s)V .
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(a) Load network (h) s-domain diagmmFigure 10.1.

- Generalized impedance Z(s) and admittance Y(s) are directly related

to the circuit’s behavior given an input signal with a specific complex
frequency. This will be covered in more detail in Chapter 13, where
we apply Laplace transform to analyze a circuit.

Example 10.2: Calculations with Complex Frequency
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(a) Network for Example 10.2 (h) s-domain diagram Figure 10.2.
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- Impedance analysis.

Example 10.3: Miller-Effect Capacitance
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(a) Inverting voltage amplifier
with feedback capacitor
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(b) s-domain diagram
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€y =(1+A)C Cp = (1 + 1/A)C

(c) Equivalent Miller-effect capacitances F] gure 10.3.

Example 10.4: Generalized Impedance Converter

1,

Lin

T
Figure 10.4.

125



10.2 Network functions

Any response forced by a complex-frequency excitation.

. - ot —nRaly,st0
Input: x(t)—Xme cos(oot+(px)—Re§Xe T
X=X Op =X e‘](px.

m-TXx m

st [J
B

Response: y(¢) = Ymeot cos(wr + (px) =Rede

_ _ JO
Y=y Og,=Y ¢ 7.

Network function: H(s)=Y/X.

A network function is also known as a driving point function if it
relates a network's terminal variables. It can also be a transfer function

since y(¢) can be any voltage or current within the network.
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- A network function is also a rational function. Its numerator is a
polynomial obtained from the right hand side of the differential
equation with derivatives replaced by powers, the denominator is a
polynomial obtained from the left-hand side of the differential
equation.

Example 10.5: Series LRC Network Functions
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+ -+ -
0
Us iL L R 1047 +
C) C == v¢
Figure 10.6.

- The network function can also be obtained by using s-domain
impedances and admittances. Impedance analysis can be done by
series-parallel reduction, voltage and current dividers, proportionality,
source conversions and node/mesh equations.

Example 10.6: Finding Network Functions

i, 1,

SC) SR C== v _CD SR =Vc

/1

(@) Circuit for Example 10.6 (b) s-domain diagram Fi gure 10.7.
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Example 10.7: Twin-Tee Network with an Op-Amp

C C RI2

1 1 RI2
Si S
I¢ I¢ oV3 $—0 Vout

(b) s-domain diagram Fi gure 10.8.
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10.3 Network functions with mutual inductance

R, +M

v I; Lout

SCi) Ly Ly <R,

(a) Circuit with mutual inductance

Ry stLy = M) s(Lo = M)

(b} s-domain diagram with tee network Figure 10.10.

10.4 s-domain analysis

- The network function is more easily obtained from impedance
analysis than from differential equations.

- Both forced response and natural response can be determined.

- Poles and zeros: poles are roots of the denominator, zeros are roots of
the numerator.

- Gain factor corresponds to the dc gain.

- Gain factor X is real. Poles and zeros are either real or in complex
conjugate pairs. The number of poles is the order of the circuit

129



ircuit).

o
N

O
SN
..““.“....N“:...

ey

——7

(number of independent energy-storage elements in the ¢

£ A
& 22
o g
=
m A
N A S
/N
_ e
3 N S SY e
g SOOXAANRRRNRRAR
E OO
g ORI
= A RASANARRNA
T e DO /7 w0
| IR /-
G N
2
£ 2.

|H(s)!

Figure 10.11.
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(b) Surface contour
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- Forced response and s-plane vectors.
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Figure 10.13.

Example 10.9: Calculations with s-Plane Vectors
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Figure 10.14.
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Natural response and stability: poles of the network function are
characteristic values of the circuit natural response, each pole

corresponds

to a mode.

Figure 10.15.
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- A circuit is stable if all poles are in the left half of the s plane.
- Oscillator and pole-zero cancellation.

Example 10.10: Natural Responses of a Third-Order Circuit
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