Chapter 10 Network Functions and s-Domain Analysis

10.1 Complex frequency and generalized impedance

- Complex frequency: oscillating voltages or currents with exponential amplitudes.

$$x(t) = X_m e^{\sigma t} \cos(\omega t + \phi_x) = \text{Re} \left[X_m e^{\sigma t} e^{j(\omega t + \phi_x)} \right]$$
$$= \text{Re} \left[(X_m e^{j\phi_x}) e^{(\sigma + j\omega)t} \right]$$

- Complex frequency: $s \equiv \sigma + j\omega$.
- Phasor: $\underline{X} \equiv X_m \angle \phi_x = X_m e^{j\phi_x}$.

Example 10.1: A Complex-Frequency Waveform

- For a "real" frequency, we have

-
$$i(t) = I_m \cos(\omega t + \phi_i) = \text{Re}\left[\underline{I}e^{j\omega t}\right].$$

-
$$v(t) = V_m \cos(\omega t + \phi_v) = \text{Re}\left[\underline{V}e^{j\omega t}\right].$$

-
$$\underline{V} = V_m \angle \phi_v$$
, $\underline{I} = I_m \angle \phi_i$.

- For a "complex" frequency, we replace $j\omega$ with s.

-
$$i(t) = \text{Re}\left[\underline{I}e^{St}\right] = I_m e^{\mathbf{\sigma}t} \cos(\omega t + \phi_i)$$
.

-
$$v(t) = \text{Re}\left[\underline{V}e^{St}\right] = V_m e^{\mathbf{\sigma}t} \cos(\omega t + \phi_v)$$
.

- Generalized impedance: $Z(s) \equiv \underline{V} / \underline{I}$, or $\underline{V} = Z(s)\underline{I}$.
- Generalized admittance: $Y(s) \equiv 1/Z(s) = \underline{I}/\underline{V}$, or $\underline{I} = Y(s)\underline{V}$.

- Generalized impedance Z(s) and admittance Y(s) are directly related to the circuit's behavior given an input signal with a specific complex frequency. This will be covered in more detail in Chapter 13, where we apply Laplace transform to analyze a circuit.

Example 10.2: Calculations with Complex Frequency

- Impedance analysis.

Example 10.3: Miller-Effect Capacitance

(a) Inverting voltage amplifier with feedback capacitor

(b) s-domain diagram

(c) Equivalent Miller-effect capacitances

Figure 10.3.

Example 10.4: Generalized Impedance Converter

Figure 10.4.

10.2 Network functions

- Any response forced by a complex-frequency excitation.
- Input: $x(t) = X_m e^{\mathbf{G}t} \cos(\omega t + \phi_x) = \text{Re}\left[\underline{X}e^{St}\right],$

$$\underline{X} \equiv X_m \angle \phi_{\chi} = X_m e^{j\phi_{\chi}}.$$

- Response: $y(t) = Y_m e^{\sigma t} \cos(\omega t + \phi_x) = \text{Re} \left[\underline{Y} e^{St} \right],$ $\underline{Y} = Y_m \angle \phi_Y = Y_m e^{j\phi_Y}.$
- Network function: $H(s) \equiv \underline{Y} / \underline{X}$.
- A network function is also known as a driving point function if it relates a network's terminal variables. It can also be a transfer function since y(t) can be any voltage or current within the network.

- A network function is also a rational function. Its numerator is a polynomial obtained from the right hand side of the differential equation with derivatives replaced by powers, the denominator is a polynomial obtained from the left-hand side of the differential equation.

Example 10.5: Series LRC Network Functions

- The network function can also be obtained by using *s*-domain impedances and admittances. Impedance analysis can be done by series-parallel reduction, voltage and current dividers, proportionality, source conversions and node/mesh equations.

Example 10.6: Finding Network Functions

Example 10.7: Twin-Tee Network with an Op-Amp

(a) Twin-tee network with an op-amp

(b) s-domain diagram

Figure 10.8.

10.3 Network functions with mutual inductance

(a) Circuit with mutual inductance

(b) s-domain diagram with tee network

Figure 10.10.

10.4 *s*-domain analysis

- The network function is more easily obtained from impedance analysis than from differential equations.
- Both forced response and natural response can be determined.
- Poles and zeros: poles are roots of the denominator, zeros are roots of the numerator.
- Gain factor corresponds to the dc gain.

- Gain factor *K* is real. Poles and zeros are either real or in complex conjugate pairs. The number of poles is the order of the circuit

(number of independent energy-storage elements in the circuit).

(a) Pole-zero pattern with complex poles

Figure 10.11.

Example 10.8: Pole-Zero Pattern of a Fifth-Order Network

Figure 10.12.

- Forced response and *s*-plane vectors.

 $\overline{\sigma}$ Figure 10.13.

Example 10.9: Calculations with s-Plane Vectors

Figure 10.14.

- Natural response and stability: poles of the network function are characteristic values of the circuit natural response, each pole corresponds to a mode.

- A circuit is stable if all poles are in the left half of the s plane.
- Oscillator and pole-zero cancellation.

Example 10.10: Natural Responses of a Third-Order Circuit