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Outline
Chapter 10: Biosignal processing
• Characteristics of biosignals
• Frequency domain representation and analysis

– Fourier series, Fourier transform, discrete Fourier 
transform

– Digital filters

• Signal averaging
• Time-frequency analysis

– Short-time Fourier transform
– Wavelet transform

• Artificial neural networks
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Example biosignals
EEG EMG

Blood pressure

ECG
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Characteristics of (bio)signals
• Continuous vs. discrete

• Deterministic vs. random
– Deterministic: can be described by mathematical functions 

or rules
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n =0, 1, 2, 3… ⇒ n is an integer

we will deal with discrete signals in this module (a subset of digital 
signal processing)

continuous variables such as time and space

sampled at a finite number of points

Periodic signal is an example of deterministic signals

⇒ repeats itself every T units in time, T is the period

ECG and blood pressure both have dominant periodic components
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Characteristics of biosignals
Random (stochastic) signals
- Contain uncertainty in the parameters that describe them, therefore, 
cannot be precisely described by mathematical functions
- Often analyzed using statistical techniques with probability 
distributions or simple statistical measures such as the mean and 
standard deviation
- Example: EMG (electromyogram)

Stationary random signals: the statistics or frequency spectra of the 
signal remain constant over time. It is the stationary properties of 
signals that we are interested in

Real biological signals always have some unpredictable noise or 
changes in parameters ⇒ not completely deterministic
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Signal processing

Ultimate goal of signal processing: to extract useful 
information from measured data

• Noise reduction and signal enhancement
• Signal conditioning
• Feature extraction
• Pattern recognition
• Classification such as diagnosis
• Data compression
• and more…
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Time domain analysis 
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Some commonly used time-domain statistical measurements of 
biomedical signals

Root-mean-square 

Average rectified value

For example, the RMS value of an EMG signal is used to express the power of 
the signal, which can determine the fatigue, strength of force and ability of a 
muscle to handle mechanical resistance

The ARV describes the smoothness of the EMG signal
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Frequency domain representation of signals
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Fourier’s theory: a complex waveform can be approximated to any degree of 
accuracy with simpler functions

Example: a periodic square wave of period T can be represented by summing 
sinusoids with proper amplitudes and frequency
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Frequency domain representation of signals

But real biosignals are not periodic
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As an expansion of the Fourier series in the previous slide, the
Fourier integral or Fourier transform (FT) of a continuous signal is 
defined as

ω is continuous frequency, and X(ω) has complex values whose 
magnitude represents the amplitude of the frequency component at ω
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The original (time-domain) signal can be completely recovered by 
the inverse Fourier transform (IFT), given sufficient sampling rate
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Example: extracting frequency-domain information in the signal

Time-domain signal (100Hz sine 
wave with random noise) Frequency-domain (magnitude) 

Time (s) Frequency (Hz)
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Frequency domain representation of signals

Fourier domain (magnitude)

In practice, the signal is discrete both in time and magnitude, and a 
discrete version of Fourier transform is carried out to get the Fourier 
(frequency) domain representation

Example: blood pressure waveform (sampled 
at 200 points/s)
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Discrete Fourier transform (DFT)
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Recall that the input is a discrete signal, which is basically a series of 
numbers

n =0, 1, 2, … , N-1
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The discrete Fourier transform (DFT) of the discrete signal is

n =0, 1, … , N-1

Similarly, an inverse discrete Fourier transform is of this form:

Note that the number of data points in x(n) and X(m) are always 
the same
The frequency in the Fourier domain is related to the sampling 
frequency  fs
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Discrete Fourier transform
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m = 0 m= N-1

The magnitude of its DFT:

The corresponding frequency ω
of the X(m)

2 frequency components in x(n)

Frequency (rad)

Total number of data points N
⇒ The step size in frequency is

N
π2

(rad)

π2⋅
N
m
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Discrete Fourier transform

-π π

For any real-valued signal, its Fourier transform has symmetric values with 
respect to ω=0.  Conventionally, the DC (ω=0) component is plotted in the middle 
⇒ switch the left and right halves of DFT (“fftshift”function in Matlab)

DFT magnitude after “fftshift”

Frequency (rad)

zoom in around the peaks

Frequency (rad)

Example problem 10.13
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Discrete Fourier transform
•Another important feature of DFT is that it is periodic with a period 
of 2π
•Moreover, it is implied that the time-domain signal is also periodic
•Due to the symmetric values of DFT, it is sufficient to show only the 
frequency range 0~π
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Discrete Fourier transform

For a signal that is sampled at a sampling frequency fs (Hz)

Relationship between frequency-domain sequence and the time domain 
signal

• Its DFT has a frequency range of -π~π (rad) which corresponds to
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• Its DFT is a sampled version of the continuous FT of the signal
(sampling interval = 2π/N or fs/N)
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Frequency domain analysis – comments

• Fourier transform describes the global
frequency content of the signal

– At each frequency ω, the magnitude of FT 
represents the amount of that frequency contained 
in the signal

– At each frequency ω, the phase of FT measures the 
location (relative shift) of that frequency component. 
However, the phase information is more difficult to 
interpret and less often used than the magnitude

• Methods that provide time-frequency 
information of the signal

– Short-time Fourier transform
– Wavelet transform
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Digital filters
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As in the analog case, digital filters can be implemented in the frequency 
domain

Fourier transform

inverse Fourier 
transform

filtered signal

time-domain frequency-domain

is the transfer 
function of the filter
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DFT

inverse DFT
filtered signal
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For discrete signals

time-domain frequency-domain

is a discrete transfer 
function sampled from
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Digital filters
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Alternatively, digital filters can be implemented in the time-domain

The general form of a real-time digital filter (difference equation)
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output of the current time n

input of the current time n

are output and input of the previous data pointand

• It is real-time because it does not need the value of any “future”samples
•Can be calculated easily
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Digital filters
Finite impulse response (FIR) filter: impulse response has a finite number of 
nonzero points

Example: )2(
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Infinite impulse response (IIR) filter: impulse response has an infinite 
number of nonzero points

Example: )1(
2
1
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2
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)( −+= nynxny (depends on value of 
previous output)
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Digital filters
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The frequency-domain characteristics of digital filters can be analyzed 
by using the z transform

The z transform is similar to the Laplace transform which converts a 
continuous time-domain signal into frequency domain

We can describe the frequency response of a digital filter by using 
its transform function

for the frequency range sff 5.00 <≤

real

imaginary

Note that z is on the unit circle in the complex plane
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Digital filters
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In a simple method of designing digital filters, the transfer function 
can be expressed as

where zi is zero and pi is pole

0.5 fs

•We can set zeros on the unit circle to obtain 
low gain near the zero

•The poles are located near the zeros to 
obtain sharp transitions zero

pole
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Digital filters – example 1
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60 Hz notch filter, sampling frequency fs = 244.14Hz, we can set zeros and 
poles as
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So the transfer function is

Then we can get the digital filter

0 < α < 1

)]([)]([ nxZzknxZ k−=−

A very useful property of the z transform (time-shifting)



24

Digital filters – example 1

α = 0.95544.1)14.244/60(2 == πθ

Substitute the numbers into the transfer function 

Frequency response of the 60Hz notch filter 
(DC gain adjusted to 1)

Effects of different α
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Digital filters – example 2
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A high-Q high pass filter, fs = 100 Hz

Select: 

double zeros at z=1

double poles at z=0.9

Transfer function:
Frequency response of the high pass filter

Digital filter:
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Signal averaging
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Averaging can be considered as a low-pass filter since high frequency 
components will be attenuated by averaging

For most biological signals there is a random noise superimposed on 
the quantity of interest

)()()( tntxtyi +=
yi(t) is the measured signal; subscript i indicates 
multiple measurements are obtained

x(t) is the deterministic component, assuming it 
exists

n(t) is random noise

If we take the average of measurements from N separate trials
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If the noise is purely random the error of measurement will decrease as the 
number of trials N gets larger
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Signal averaging – example 1

Auditory response averaged from 1000 trials (measurements) to 
reduce the effects of noise
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Signal averaging – example 2
Use the blood pressure data (slide 9) as an example

Note that the blood pressure waveform is approximately periodic

From the average waveform, we can get many useful parameters such as 
the maximum and minimum pressures, derivative of pressure rise during 
systole, and rate of decay during diastole

Overlay of many 
periods of the 
pressure 
waveform

Average over all 
the periods
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Signal averaging – example 3
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For signals that are more random (aperiodic), signal averaging in the frequency 
domain may be useful

Example: EEG signal is aperiodic and the frequency of the signal is of interest 
because it indicates the activity level of the brain

multiple segments of data 

i=1,2,… ,L

DFT
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)(mPi )(mPaverage
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)(kxL
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Signal averaging – example 3

Raw data is divided into 16 
segments, each containing 64 
points

Average in the frequency domain

DFT (magnitude) of EEG 
data from previous slide
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Time-frequency analysis
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To capture the “local”frequency characteristics of the signal, the short-
time Fourier transform (STFT) can be used and is defined as

where g(t) is a window function which has a limited time span. a is the 
amount of shift of the window function, therefore we can obtain the FT 
of the signal and know where in time it occurs

The result of STFT is a 2D matrix whose elements are the 
coefficients at corresponding frequency ω and time-shift a

time

frequency
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In practice, a sharp window is not 
the best choice due to the rippling 
effects it causes

Tapered 
window

Rectangular 
window

Original ECG signal

frequency

Time (shift)

Magnitude of STFT

Example of STFT of ECG
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STFT – comments
However, the short-time Fourier transform has two major 
shortcomings:
•The window length is fixed throughout the analysis. We are not 
able to capture events with different durations.
•The sinusoidal functions used in STFT to model the signal may 
not be the best choice. Specifically, the local features of biomedical 
signals may contain sharp corners that can not be modeled by the
smooth shape of the sinusoidal waveforms.

To address the above shortcomings ⇒ Wavelet Transform
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The Daubechies order 4 (db4) 
wavelet

The Maxican hat wavelet

The Haar wavelets

Wavelet transform (WT)
Some commonly used wavelets for processing of biomedical signals

The Morlet wavelet with ω0 = 2
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Wavelet transform

The mother wavelet is scaled in time to create a series of “high-frequency”
components as an analogy to the harmonics in sinusoidal decomposition 
(Fourier series)

Original wavelet
Scaled by a 
factor of 1/2

Scaled by a 
factor of 1/4

To address the problem of fixed window widths, the concept of “scaling” is 
used
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Wavelet transform
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The continuous wavelet transform of x(t) can be expressed as

where a is the shifting factor and s is the scaling factor

)(tϕ is the mother wavelet

The WT coefficients C(a,s)
- measure the similarity between the wavelet basis functions and the input 
waveform x(t)
- is a function of the shifting factor and the scaling factor (2D)
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Wavelet transform – example
Chirp signal 

Shift (a)

The Maxican hat wavelet

small

large

Scale (s)

Low frequency

High frequency

Wavelet transform coefficients
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Wavelet transform – reconstruction

Original ECG signal

Reconstructed waveform using 
Daubechies order 8 (db8) wavelet

Reconstructed waveform using 
Haar wavelet
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Wavelet transform – summary

The basis functions in WT are the shifted and scaled versions of
the mother wavelet
Every choice of mother wavelet gives a particular WT ⇒ very 
important to choose most suitable mother wavelet for a particular 
task. 
Rules of thumb: 
(a) use complex mother wavelets for complex signals. 
(b) Mother wavelet resembles the general shape of the signal to be 
analyzed

In practice, discrete wavelet transforms dealing with discrete 
signals are implemented by using digital low-pass and high-pass 
filters to decompose the signal into a series of “approximation”and 
“detail”components
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Wavelet transform – example 1

scale

Time

An example of WT of an ECG waveform

Original data

WT coefficients

Low frequency

High frequency

(Morlet wavelet)
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Wavelet transform – example 2
Decomposition of a chirp signal containing a short burst of noise 
into different levels of details d1-d10

Original signal

Low frequency

High frequency

(Daubechies order 20 wavelet)



42

EOG – slow eye movements

Mother wavelet –
Daubechies order 4 (db4)

Example 3: analysis of electrooculogram (EOG) using wavelet 

Most slow eye movements 
signal is in details 8-10
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Wavelet transform – comments
• Time-frequency decomposition of input signal
• Both short duration, high frequency and longer 

duration, lower frequency information can be captured 
simultaneously

• Particularly useful in the analysis of transient, aperodic
and non-stationary signals

• Variety of wavelet functions is available, which allows 
signal processing with the most appropriate wavelet

• Applications of WT in biomedical signal and image 
processing: filtering, denoising, compression, and 
feature extraction
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Artificial neural networks (ANN)
The human brain is a complex, non-linear, highly parallel information 
processing system
The human brain consists of 100 billions of brain cells (neurons) that 
are highly interconnected
ANNs are computational methods inspired by the formation and 
function of biological neural structures
ANNs consist of much less number of neurons
ANNs are designed to learn from examples to recognize certain inputs
and to produce a particular output for a given input
ANNs are commonly used for pattern detection and classification
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Artificial neural networks
Simple example of a multilayer neural network

There can be an arbitrary number of hidden layers, each of which can have 
an arbitrary number of neurons
The connections between neurons are represented in “weights”

Input layer: number of neurons equals to number of inputs

Output layer: number of neurons equals to number of outputs
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Artificial neural networks
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The function g(x) is called activation function to mimic the excitation of a 
biological neuron. Some examples of activation function include

Threshold function (T = threshold) 

1   if x > T

-1   if x < -T

0   if -T < x < T

Sigmoid function
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Artificial neural networks
Training of the ANN (supervised learning)
•The goal of training is to teach it how to determine the particular class each 
input pattern belongs to
•The weights are initialized by random numbers
•Each example with a known class is fed into the ANN and the weights are 
updated iteratively to produce a better classification
• In backpropagation neural networks, the weights of the neural network are 
updated through the propagation of error (difference between the output and 
the target) from the output backward to the neurons in the hidden layers and 
input layers
•The training process terminates when the total error at the output no longer 
improves or a preset number of iterations has been passed
•Once the weights are found, the ANN is uniquely defined and ready to be 
used to analyze unknown data inputs

Note that ANNs require many training examples to learn a pattern. If the 
number of examples is not sufficient for a problem ⇒ overfit the training 
examples without learning the true patterns
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Artificial neural networks

• ANNs do not need any assumption about the 
distribution of data

• ANNs are nonlinear, therefore are suitable for 
solving complex nonlinear classification and 
pattern recognition problems

• ANNs with unsupervised learning (the outputs 
for given input examples are not known) have 
also been used in biosignal processing (ex. 
self-organizing feature maps networks)
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It suffices to stand in awe at the structure of the 
world, insofar as it allows our inadequate senses 
to appreciate it.

− Albert Einstein


