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Chapter 10: Biosignal processing

Characteristics of biosignals

Frequency domain representation and analysis

— Fourier series, Fourier transform, discrete Fourier
transform

— Digital filters
Signal averaging
Time-frequency analysis
— Short-time Fourier transform
— Wavelet transform

Artificial neural networks



Example biosignals
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——— Blood pressure




Characteristics of (bio)signals

Continuous vs. discrete

X(t)  continuous variables such as time and space

X(N) n=0, 1,2, 3... b nis an integer

sampled at a finite number of points

we will deal with discrete signals in this module (a subset of digital
signal processing)

Deterministic vs. random

—  Deterministic: can be described by mathematical functions
or rules

Periodic signal is an example of deterministic signals

X(t) =x(t+nT) P repeats itself every T units in time, T is the perio

ECG and blood pressure both have dominant periodic components .



Characteristics of biosignals

Random (stochastic) signals
- Contain uncertainty in the parameters that describe them, therefore,
cannot be precisely described by mathematical functions

- Often analyzed using statistical techniques with probability
distributions or simple statistical measures such as the mean and
standard deviation

- Example: EMG (electromyogram)

Stationary random signals: the statistics or frequency spectra of the
signal remain constant over time. It is the stationary properties of
signals that we are interested Iin

Real biological signals always have some unpredictable noise or
changes in parameters b not completely deterministic



Signal processing

Ultimate goal of signal processing: to extract useful
information from measured data

 Noise reduction and signal enhancement
e Signal conditioning

 Feature extraction

« Pattern recognition

 Classification such as diagnosis
 Data compression

e and more...




Time domain analysis

Some commonly used time-domain statistical measurements of
biomedical signals

Nt
a x (n
n=0

N

Root-mean-square RMS=

N1
a [x(n)
Average rectified value ARV = ”=°T

For example, the RMS value of an EMG signal is used to express the power of
the signal, which can determine the fatigue, strength of force and ability of a

muscle to handle mechanical resistance
The ARV describes the smoothness of the EMG signal



Frequency domain representation of signals

Fourier’s theory: a complex waveform can be approximated to any degree of
accuracy with simpler functions

Example: a periodic square wave of period T can be represented by summing
sinusoids with proper amplitudes and frequency
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Frequency domain representation of signals

But real biosignals are not periodic

As an expansion of the Fourier series in the previous slide, the

Fourier integral or Fourier transform (FT) of a continuous signal is
defined as

X (W) = Ci x(t)e Mt

W is continuous frequency, and X(w) has complex values whose
magnitude represents the amplitude of the frequency component at w

The original (time-domain) signal can be completely recovered by
the inverse Fourier transform (IFT), given sufficient sampling rate

X(t) = 21) &, X w)e™dw



Example: extracting frequency-domain information in the signal

Time-domain signal (100Hz sine
wave with random noise) Frequency-domain (magnitude)
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Frequency domain representation of signals

Example: blood pressure waveform (sampled
at 200 points/s) Fourier domain (magnitude)
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In practice, the signal is discrete both in time and magnitude, and a
discrete version of Fourier transform is carried out to get the Fourier

(frequency) domain representation
11



Discrete Fourier transform (DFT)

Recall that the input is a discrete signal, which is basically a series of
numbers

X(N) n=0,1,2, .. N1

The discrete Fourier transform (DFT) of the discrete signal is

| 2pmn

N-1
X(m=g x(nNe N n=01, .. N1
n=0

Similarly, an inverse discrete Fourier transform is of this form:

10t i
x(n)=—a X(me "
N m=0

Note that the number of data points in X(n) and X(mM) are always
the same

The frequency in the Fourier domain is related to the sampling
frequency f, 12




Discrete Fourier transform

Example problem 10.13  x(n) = Sin(pz n) + 2COS(% n)

The magnitude of its DFT: \ \
‘ ' ' ' ' ' ' 2 frequency components in X(N)
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i b The step size in frequency is
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Discrete Fourier transform
Example problem 10.13

For any real-valued signal, its Fourier transform has symmetric values with

respect to W=0. Conventionally, the DC (W=0) component is plotted in the middle
P switch the left and right halves of DFT (“fftshift” function in Matlab)

zoom in around the peaks

DFT magnitude after “fftshift”
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Discrete Fourier transform

e Another important feature of DFT is that it is periodic with a period
of 2p

e Moreover, it is implied that the time-domain signal is also periodic

e Due to the symmetric values of DFT, it is sufficient to show only the
frequency range O~p

15



Discrete Fourier transform

Relationship between frequency-domain sequence and the time domain
signal
For a signal that is sampled at a sampling frequency f; (Hz)

e Its DFT is a sampled version of the continuous FT of the signal
(sampling interval = 2p/N or f/N)

o Its DFT has a frequency range of -p~p (rad) which corresponds to
1
- = f

1f (Hz)
-~ — Z
2 ° 2 °
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Frequency domain analysis — comments

 Fourier transform describes the global
frequency content of the signal
— At each frequency w, the magnitude of FT

represents the amount of that frequency contained
In the signal

— At each frequency w, the phase of FT measures the
location (relative shift) of that frequency component.
However, the phase information is more difficult to
Interpret and less often used than the magnitude

 Methods that provide time-frequency
Information of the signal
—  Short-time Fourier transform

— Wavelet transform

17



Digital filters

As in the analog case, digital filters can be implemented in the frequency
domain

time-domain frequency-domain
X(t) Fourier transform’ X (W)
: : [ H(w) is the transfer
Inverse Fourier . :
transform function of the filter
filtered signal < X(w)>H(w)
For discrete signals
time-domain frequency-domain
x(n) DFT ~ X(m)
H(m) is a discrete transfer
function sampled from H (w)
inverse DFT
filtered signal < X(m)>H(m)

18



Digital filters

Alternatively, digital filters can be implemented in the time-domain

The general form of a real-time digital filter (difference equation)
M M

y(n) = a4 bx(n- m- g a,y(n- m

y(n) output of the current time n

X(N) input of the current time n

y(n-1)and X(n- 1) are output and input of the previous data point

o It is real-time because it does not need the value of any “future” samples
« Can be calculated easily
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Digital filters

Finite impulse response (FIR) filter: impulse response has a finite number of
nonzero points

Example: y(n) :%x(n)+%x(n- 1)+%x(n- 2)

Infinite impulse response (lIR) filter: impulse response has an infinite

number of nonzero points

1 (depends on value of
Example: - y(Nn) = E X(n) + previous output)

20



Digital filters

The frequency-domain characteristics of digital filters can be analyzed
by using the z transform

X (2) = Z[x(n)] = 5_1 x(nN)z "

The ztransform is similar to the Laplace transform which converts a
continuous time-domain signal into frequency domain

We can describe the frequency response of a digital filter by using
its transform function

0 (Z) B Y(Z) Imaginary

- X(2)
7 =@l%Mfs :COS(pr / fs)+Jsm(2pf /fs) /\refal
for the frequency range O£ f <0.5f, /\/

Note that z is on the unit circle in the complex plane
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Digital filters

In a simple method of designing digital filters, the transfer function
can be expressed as

H (Z) = C) ((ZZ- 3)) where z is zero and p; is pole

* \WWe can set zeros on the unit circle to obtain y

low gain near the zero

» The poles are located near the zeros to
obtain sharp transitions O zero

v

X pole



Digital filters — example 1

60 Hz notch filter, sampling frequency f, = 244.14Hz, we can set zeros and
poles as

z, =€ '®"% =cosq - jsing p, =az
O<acx<l

So the transfer function is
H(z) = Y(2) _ (z- z)(z- z,) _ 1- 2cosq xz' 14 772
X(2) (Z pl)(z pz) 1 2a XCoSq Xz lya’xz?

A very useful property of the ztransform (time-shifting)
Z[x(n- k)] =Z"Z[x(n)]

Then we can get the digital filter

y(n) = x(n) - 2cosq xx(n- 1) + x(n- 2) + 2a cosq xy(n- 1) - a*y(n- 2)
23



Digital filters — example 1

Substitute the numbers into the transfer function

q =2p (60/244.14) =1.544 a =095

Frequency response of the 60Hz notch filter
(DC gain adjusted to 1)
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Digital filters — example 2

A high-Q high pass filter, f,= 100 Hz
Select: /
double zeros at z=1
double poles at z=0.9

Transfer function:

2 Frequency response of the high pass filter
(Z' 1) 1 ! g . s ; ! : : :
H (Z) — 5 N S s A R T
(z- 0.9
7= @it/ fs
Digital filter: |
y(n) = 0.9025x(n) - 1.805x(n- 1)

i i i i ; i i i i
0 5 10 15 20 25 30 3 40 45 50
Freguency (Hz)

+0.9025x(n- 2)+1.8y(n- 1)- 0.81y(n- 2)
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Signal averaging

Averaging can be considered as a low-pass filter since high frequency
components will be attenuated by averaging

For most biological signals there is a random noise superimposed on

the quantity of interest Yyi(t) is the measured signal; subscript i indicates

Y. (t) = X(t) + n(t) multiple measurements are obtained

X(1) is the deterministic component, assuming it
exists

n(t) is random noise

If we take the average of measurements from N separate trials

0= A Yk P Y00 =K+ &

If the noise is purely random the error of measurement will decrease as the
number of trials N gets larger

26



Signal averaging — example 1

Trial 1 A R

Tral2 oo

Trial 3 Jﬂpwwmwmwﬂn
+
Trial 4 MW‘NHWMWN N
-t = WWW
+
[ ]
L
L

50 pVolts

10 msec

Auditory response averaged from 1000 trials (measurements) to
reduce the effects of noise
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Signal averaging — example 2

Use the blood pressure data (slide 9) as an example
Note that the blood pressure waveform i§ appr_oximate_l_y p__eriodic
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From the average waveform, we can get many useful parameters such as

the maximum and minimum pressures, derivative of pressure rise during

systole, and rate of decay during diastole



Signal averaging — example 3

For signals that are more random (aperiodic), signal averaging in the frequency
domain may be useful

Example: EEG signal is aperiodic and the frequency of the signal is of interest
because it indicates the activity level of the brain

200 EEG (mv)
aol- multiple segments of data
300 [ —
Xi (n) 1=1,2,...,L
200
100 DFT
0
=100 Xi (m)
—200
2
-300 ‘ ‘
—400
-EDGD 2*:'!0 4;]'0 ﬁl‘IZIU Btlj{] 1000 R (m) g P (m)

average
/) \ Kk (sample number) —

X% %K) x () %




Signal averaging — example 3

x10° 1024 DFT OF EEG DATA

DFT (magnitude) of EEG 3
data from previous slide

1k l }

0 . 0.6 0.8 1
Raw data is divided into 16

segments, each containing 64

Average in the frequency domain

points
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Time-frequency analysis

To capture the “local” frequency characteristics of the signal, the short-
time Fourier transform (STFT) can be used and is defined as

X(w,a) = ), x()g(t- a)e e

where g(t) is a window function which has a limited time span. ais the
amount of shift of the window function, therefore we can obtain the FT
of the signal and know where in time it occurs

The result of STFT is a 2D matrix whose elements are the
coefficients at corresponding frequency w and time-shift a

A

frequency

time 31
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Example of STFT of ECG

In practice, a sharp window is not

Original ECG signal the best choice due to the rippling

g effects it causes

2 ’ 120 PERIODIC PRESSURE WAVEFORM (mmHG)
o r Jw{ i

100 N«.)U\JWJJ ‘*"M*JMHAJM 100 ﬁ

0 1 2 3 4 5 6
80

Magnitude of STFT -

18
40 |

16

.
o ) 20| Tapered Rectapgular
S . window window
i 0 :
o 0 1 2 3 4 5
< oL TIME (s)

;

F 25 3 A5 4 45 5

Time (shift)
32



STFT — comments

However, the short-time Fourier transform has two major
shortcomings:

* The window length is fixed throughout the analysis. We are not
able to capture events with different durations.

» The sinusoidal functions used in STFT to model the signal may
not be the best choice. Specifically, the local features of biomedical
signals may contain sharp corners that can not be modeled by the
smooth shape of the sinusoidal waveforms.

To address the above shortcomings P Wavelet Transform
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Wavelet transform (WT)

Some commonly used wavelets for processing of biomedical signals

The Daubechies order 4 (db4)

The Haar wavelets
wavelet

y ' - T
| I

OFr

-0.5}
1t . : g
0 2 4
The Maxican hat wavelet The Morlet wavelet with Wy = 2
yr(r)

r T T T T T T T
+ 20 \|1---
. /..
|
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Wavelet transform

To address the problem of fixed window widths, the concept of “scaling” is
used

The mother wavelet is scaled in time to create a series of “high-frequency”
components as an analogy to the harmonics in sinusoidal decomposition
(Fourier series)

1f
o Scaled by a
Original wavelet g factor of 1/2
: % 0 200 400 600 800
: _

-1t . . ) . 1F
0 200 400 600 800 _ Scaled by a
0 factor of 1/4

0 200 400 600 800
TIME (ms)
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Wavelet transform

The continuous wavelet transform of X(t) can be expressed as
1 ¥ ., t-a

S0, X * ()t

Js s

where a is the shifting factor and S is the scaling factor

C(a,s) =

j (t) is the mother wavelet

The WT coefficients C(a,s)

- measure the similarity between the wavelet basis functions and the input
waveform X(t)

- Is a function of the shifting factor and the scaling factor (2D)
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Wavelet transform — example

Chirp signal

The Maxican hat wavelet

)\
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Wavelet transform — reconstruction
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Wavelet transform — summary

The basis functions in WT are the shifted and scaled versions of
the mother wavelet

Every choice of mother wavelet gives a particular WT b very
Important to choose most suitable mother wavelet for a particular
task.

Rules of thumb:
(a) use complex mother wavelets for complex signals.

(b) Mother wavelet resembles the general shape of the signal to be
analyzed

In practice, discrete wavelet transforms dealing with discrete
signals are implemented by using digital low-pass and high-pass
filters to decompose the signal into a series of “approximation” and
“detail” components
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Wavelet transform — example 1

An example of WT of an ECG waveform

60+ IuRs -
o 40 F
E?ﬂ- P T | 4 ..
§ ”'ﬁk\ﬂi fﬂv\’% ,_w\ A\ ~J  Original data
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3 10' L s ..
scale | WT coefficients
. —— - " _—
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1] as 1 1.8 2 290 4
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Wavelet transform — example 2

Decomposition of a chirp signal containing a short burst of noise
into different levels of details d;-d,,

/\W“AM\/\/W\/\M xom Original signal

WW & High frequency
sl da)
WA A ool ds(t)
ﬂ-r—-Wsz\M—-—uumwwu\MﬁUﬂg daft)
Jv—wrM\N\/\/\/W\M\/W ds(t)
B e VAV AV AV AV s B0
e NS N T ()
T — 1) ,

—_— doft)

v

Low frequency

djo(t)

(Daubechies order 20 wavelet)
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Example 3: analysis of electrooculogram (EOG) using wavelet

EOG — slow eye movements

Mother wavelet —
Daubechies order 4 (db4)

50§M‘—w\w\f¥ Most slow eye movements
500 | | | signal is in details 8-10
200 T T T D1DWV]
[} e e T I SR |
200 : 1 COAL V]
oo I 42
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Wavelet transform — comments

Time-frequency decomposition of input signal

Both short duration, high frequency and longer
duration, lower frequency information can be captured

simultaneously

Particularly useful in the analysis of transient, aperodic
and non-stationary signals

Variety of wavelet functions is available, which allows
signal processing with the most appropriate wavelet

Applications of WT in biomedical signal and image
processing: filtering, denoising, compression, and
feature extraction
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Artificial neural networks (ANN)

The human brain is a complex, non-linear, highly parallel information
processing system

The human brain consists of 100 billions of brain cells (neurons) that
are highly interconnected

ANNs are computational methods inspired by the formation and
function of biological neural structures

ANNSs consist of much less number of neurons

ANNSs are designed to learn from examples to recognize certain inputs
and to produce a particular output for a given input

ANNs are commonly used for pattern detection and classification
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Artificial neural networks

Simple example of a multilayer neural network

Hidden
Layer

Input layer: number of neurons equals to number of inputs
Output layer: number of neurons equals to number of outputs

There can be an arbitrary number of hidden layers, each of which can have
an arbitrary number of neurons
The connections between neurons are represented in “weights”
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Artificial neural networks

Relationship between the inputs and the output of a neuron

MNeuron

Input 1 Weight 1

X =bhlas+ é_ Input, xweight.

y

y=9d(X)

Input 2

Bias

The function g(x) is called activation function to mimic the excitation of a
biological neuron. Some examples of activation function include

Threshold function (T = threshold) Sigmoid function
/1 ifx>T y:g(x): 1

1+e”
Yy=0(X)=< 0 if-T<x<T

-1 ifx<-T 46



Artificial neural networks

Training of the ANN (supervised learning)

* The goal of training is to teach it how to determine the particular class each
input pattern belongs to

» The weights are initialized by random numbers

« Each example with a known class is fed into the ANN and the weights are
updated iteratively to produce a better classification

* In backpropagation neural networks, the weights of the neural network are
updated through the propagation of error (difference between the output and
the target) from the output backward to the neurons in the hidden layers and
iInput layers

» The training process terminates when the total error at the output no longer
Improves or a preset number of iterations has been passed

* Once the weights are found, the ANN is uniquely defined and ready to be
used to analyze unknown data inputs

Note that ANNSs require many training examples to learn a pattern. If the

number of examples is not sufficient for a problem P overfit the training

examples without learning the true patterns a7



Artificial neural networks

ANNSs do not need any assumption about the
distribution of data

ANNSs are nonlinear, therefore are suitable for
solving complex nonlinear classification and
pattern recognition problems

ANNSs with unsupervised learning (the outputs
for given input examples are not known) have
also been used in biosignal processing (ex.
self-organizing feature maps networks)
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It suffices to stand in awe at the structure of the
world, insofar as it allows our inadequate senses
to appreciateit.

- Albert Einsteln
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