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Outline

• Chapter 8 and chapter 5 of 1st edition: 
Bioinstrumentation

– Bridge circuit
– Operational amplifiers, instrumentation amplifiers
– Frequency response of analog circuits, transfer 

function
– Filters
– Non-ideal characteristics of op-amps
– Noise and interference
– Electrical safety
– Data acquisition (sampling, digitization)
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Overview of biomedical instrumentation

Emphasis of this module will be on instruments that measure or 
monitor physiological activities/functions

Basic instrumentation system
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Types of medical instrumentation

• Biopotential
• Blood (pressure, flow, volume, etc)
• Respiratory (pressure, flow rate, lung 

volume, gas concentration)
• Chemical (gas, electrolytes, metabolites)
• Therapeutic and prosthetic devices
• Imaging (X-ray, CT, ultrasound, MRI, 

PET, etc.)
• Others
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Characteristics of some bio-signals

EOG (ElectroOculoGram): measures the resting potential of retina

ERG (ElectroRetinoGram): measures the electrical response of retina to 
light stimuli

EGG (electrogastrogram): measures muscular activity of the stomach
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Signal amplification

• Gain up to 107

• Cascade (series) of amplifiers, with gain 
of 10-10000 each

• DC offset must be removed (ex. by HPF 
with a cutoff frequency of 1Hz)

• Further reduction of the common-mode 
signal
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Analog circuits
Wheatstone bridge circuit
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The measured Vab can be used to obtain R which represents the 
unknown resistance of devices such a strain gauge and a thermistor
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Operational amplifier (op-amp)

)( npout vvAV −=

A ~ 106

For ideal op-amps: 
•No current flows into or out of the input terminals 
(input impedance →∞)
•vp = vn since A ~ 106

•Output impedance → 0

Open-loop voltage gain

Cautions for op-amp circuits
Op-amps are used with (negative) feedback loops for stability
Must be in the active region (input and output not saturated)
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Op-amp circuits
Voltage follower or unity buffer

Vout = Vin

G=1

Advantage: input current is ~0, ∵high input impedance.  Output 
current drawn from the op-amp can drive a load (ZL) or next stage 
of circuit; particularly useful as the first stage for physiological 
measurements
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Op-amp circuits
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Input impedance = R1 ⇒ usually 
quite small

Inverting amplifier Non-inverting amplifier
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Input impedance =
Zin of the op-amp
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Op-amp circuits
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Summing amplifier

You can add more 
input signals…

Vout = −(V1+V2+V3)
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Op-amp circuits
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Subtractor

If R1=R3, R2=R4

This is called a differential amplifier

If a differential signal (ex. ECG leads, bipolar EMG) is 
measured across the input terminals
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Op-amp circuits
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Then the common-mode gain =

Homework: 

• Derive the expression for Gd=Vout/Vd (in terms of R1~R4) with a 
differential input Vd=V2-V1

• Suppose you use 4 resistors 100KΩ±1%, calculate the CMRR 
10 times using random numbers for errors in resistance

Common-mode rejection ratio CMRR of the differential amplifier

If a common-mode voltage at 
both inputs is Vcm=(V1+V2)/2

cm

d

G
G

CMRR log20=

CMRR is defined as:
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More on differential amplifier

Vout = V2-V1

•For measuring biopotentials, voltage 
gain can be obtained by subsequent 
amplifier stages

• Input impedance is small ~R

• In ECG, the impedance of skin is ~MΩ
(can be lowered to 15-100KΩ by 
applying electrolyte gel)

•Mismatches in R reduce the CMRR
Add unity buffers at 
the input terminals
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Instrumentation amplifier
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In practice, Rgain is external and used to 
select gain which is typically 1-1000
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Instrumentation amplifier
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Provides good CMRR without the need for precisely matching 
resistors
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Example of common-mode voltage
Interference from power line (60Hz) can induce current idb

Gdbcm Ziv ⋅=

For idb = 0.2 µA

ZG = 50 kΩ
vcm = 10 mV
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Driven-right-leg circuit
Output is connected to the right leg through a surface electrode, 
which provides negative feedback
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Driven-right-leg circuit

Current at inverting input:
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Time-varying signals
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Sinusoidal signals have amplitude, frequency and phase 

Phasors: complex numbers (magnitude and phase angle) 
representing the sinusoidal signal (without the frequency)

•Any signal can be decomposed into a series of sinusoidal 
waveforms with various frequencies (Fourier transform)
• In other words, we only need to describe/model a single 
sinusoidal waveform and the results can be generalized to 
any waveform that might occur in the real world
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Time-varying signals and circuits
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Since capacitors and inductors introduce phase shift to the signal, 
their impedances Z can be expressed in phasors as following

For example, the voltage across a capacitor is generated by 
electric charges accumulated in the capacitor
∴ current leads voltage
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Laplace domain analysis
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Use Laplace transform (time-domain → s-domain) to describe time-
varying signals ⇒ Differential equations become algebraic
equations

Let

Inverse Laplace transform is used when we want to obtain the 
time-domain signals (ex. transient response)
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Laplace transform
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Some properties of Laplace transform
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Laplace transform pairs



25

Transfer function

• Relationship between the input and output

• Since 
T(s) also provides information on the 
frequency and phase of the circuit –
frequency response
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Transfer function – example
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Transfer function – example2
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Frequency response

• The transfer function can be factored into 
poles and zeros

• Alternatively
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Frequency response – LPF

)1(
)(

21

2

CsRR
R

sT
+

−=

1

2'
R
R

K −=

CR
p

2
1

1
=

)/1(
1

')(
1pj

KjT
ω

ω
+

=

2
1

2

1

1
')(

p

KjT
ω

ω

+

=

Magnitude response

|K'|= R2/R1 DC (ω=0)

Gain

2
'K When ω = p1



30

Frequency response– LPF
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At the cut-off frequency fc: the magnitude response is

In this example

12 pfcc == πω

(-3dB power attenuation)
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Frequency response – HPF
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Frequency response – HPF, BPF

Homework: 

•For the HPF shown in slide 31, show that the magnitude 
response is        of the maximum at the cut-off frequency ωc

High pass filter Band pass filter Band stop filter

2
1
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Active filters
Frequency characteristics of analog filters

Amplitude Phase shift Time delay

The most important is the amplitude response which represents 
how the amplitudes of different frequency components are 
modified by the filter
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Active filters
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Response of low-pass Butterworth 
filters with different orders (-3dB 
frequency is normalized at 1)

Butterworth filter of order n

Chebyshev filter of order n

Cn is the Chebyshev polynomial of the 
first kind of degree n, ε is a constant 
that sets the passband ripple

Sharper knee with higher orders
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Active filters
Comparison of several 6-pole low-pass filters

Step response (-3dB at 1Hz)
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Active filter circuits – VCVS

Low-pass
High-pass
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VCVS filter design
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- Each circuit is a 2-pole filter; i.e. for an n-pole filter, you need to 
cascade n/2 VCVS sections

- Within each section, set R1=R2=R and C1=C2=C
- Set the gain K according to the table
- For Butterworth filters

nc ff
RC

/2
1

π
=

fc is the -3dB frequency

- For Bessel and Chebyshew low-pass filters

- For Bessel and Chebyshew high-pass filters



38

Non-ideal op-amp
Input bias current IB: simply the base or gate currents of the input 
transistors (could be either current source or sink) – the effect of IB can 
be reduced by selecting resistors to equalize the effective impedance 
to ground from the two inputs
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Non-ideal op-amp
Input offset current IOS: difference in input currents between two inputs; 
typically 0.1~0.5 IB

Input offset voltage: the difference in input voltages necessary to bring 
the output to zero (due to imperfectly balanced input stages)

The offset voltage can be eliminated by adjusting null offset pots on 
some op-amps
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Non-ideal op-amp

Voltage gain: typically 105-106 at 

DC and drops to 1 at some fT (~ 1-
10 MHz); when used with feedback 
(closed-loop gain = G), the 

bandwidth of the circuit will be fT/G

Output current: due to limited output 
current capability, the maximum output 
voltage range (swing) of an op-amp is 
reduced at small load resistances
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Practical considerations

• Negative feedback (resistor between the 
output and the inverted input terminal) 
provides a linear input/output response and in 
general stability of the circuit

• Choose resistor values 1kΩ-1MΩ (best 10kΩ–
100kΩ)

• Match input impedances of the two inputs to 
improve CMRR

• Equalize the effective resistance to ground at 
the two input terminals to minimize the effects 
of IB
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Matching effective impedance to ground

The voltage gain is 5 for both circuits

40KΩ∥10KΩ = 8KΩ

So the effective impedance to 
ground from both input terminals is 
the same
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Noise

• Interference from outside sources
– Power lines, radio/TV/RF signals
– Can be reduced by filtering, careful wiring and 

shielding

• Noise inherent to the circuit
– Random processes
– Can be reduced by good circuit design practice, 

but not completely eliminated
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Noise

• Types of fundamental (inherent) noise:
– Thermal noise (Johnson noise or white 

noise)
– Shot noise
– Flicker (1/f) noise
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Noise

kTRBrmsVnoise 4)( =
k: Boltzmann’s constant
T: absolute temperature (°K)
R: resistance (Ω)
B: bandwidth fmax-fmin

Thermal noise: generated in a resistor due to thermal motion of 
atoms/molecules

Thermal noise contains superposition of all frequencies ⇒ white noise

n
n

n
NS ==/

Shot noise: arises from the statistical uncertainty of counting discrete 
events

Flicker (1/f) noise: power spectrum is ~1/f; somewhat mysterious; 
found related to resistive materials of resistors and their connections

Shot noise =
dn/dt is the count rate
∆t is the time interval for 
the measurement

nt
dt
dn

≈∆
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Interference
Electric fields existing in power lines can couple into instruments and 
even the human body (act as capacitors)
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Electromagnetic interference
Magnetic fields in the environment can be picked up by a conductor 
and results in an induced current
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Electromagnetic interference

Reduce induced current by minimizing the area formed by the 
closed loop (twisting the lead wires and locating close to the body)

Time-varying magnetic field induces a current in a closed loop
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Electrical safety

Physiological effects of 
electricity (for a 70kg 
human)

•Threshold of perception: >0.5mA at 60Hz and >2-10mA at dc

•Let-go current: the maximal current at which the subject can 
withdraw voluntarily (>6mA)
•Respiratory paralysis: involuntary contraction of respiratory 
muscles (>18-22mA)
•Ventricular fibrillation: the current excites part of the heart muscle 
(>75-400mA)
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Electrical safety
The effects of electricity depend on many conditions such as sex, 
frequency, duration, body weight and points of entry

•The mean value for threshold of perception is 0.7mA for women and 
1.1mA for men
•The mean let-go current is 10.5mA for women and 16mA for men
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Macroshock vs. microshock

Microshock

The risk of fibrillation is small due to 
wide distribution of current through 
the body (only a small fraction flows 
through the heart)

Fibrillation can be caused by 
microshock currents 80-600µA
For safety, the limit to prevent 
microshocks is 10µA

Macroshock
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Let’s start with the power line…

Simplified electric power distribution circuits

It’s the “hot” lines that are at high voltages to ground
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Macroshock hazards

Resistance of skin and the body (per cm2)
Skin: 15KΩ~1MΩ
Limb: 200Ω
Trunk: 100Ω

Electric faults
•happen when the hot conductor (high voltage) gets in contact with 
metal chassis or cabinet that is not grounded properly
•can be caused by failures of insulation, shorted components (e.g. 
due to mechanical failure), strain and abuse of power cords, plugs 
and receptacles

⇒ internal body resistance
is only 500Ω
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Microshock hazards
Generally result from leakage currents
•small currents (~µA) flow between two adjacent conductors that are 
insulated from each other
•mostly flow through capacitance between the two conductors
•some are resistive through insulation, dust, or moisture

Leakage current
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Microshock hazards
Another example: ground potential differences (when “ground”is no 
longer at ground) ⇒ current flows from one “ground”to another 
through the patient
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Solution – isolated power distribution
Ground fault: a short circuit between the hot conductor and ground 
injects large currents into the grounding system
• the hot conductors can be isolated from ground using an isolation 
transformer

Power-isolation transformer system

If there is only one ground fault between one of the conductors and ground, 
there will be no surge current. This fault can be detected by the monitor 
system (and removed to prevent real hazard to the patients).
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Solution – grounding system

•All the receptacle grounds and 
conductive surfaces in the vicinity of the 
patient are connected to the patient-
equipment grounding point (with 
resistance = 0.15Ω)
•The difference in potential between the 
conductive surfaces must be = 40mV
•Each patient-equipment grounding 
point is connected individually to a 
reference grounding point that is in turn 
connected to the building ground
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Solution – electrical isolation
To prevent leakage currents going through the patient’s heart directly 
(microshocks), all patient leads need to be isolated electrically from the 
AC power lines ⇒ isolation amplifiers
•break the ohmic continuity of electric signals between the input and 
output ⇒ impedance across the barrier > 10MΩ
• include different supply-voltage sources and different grounds on each 
side of the isolation barrier
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Isolation amplifier example
Optically coupled signal transmission via LED and 2 matched 
photodiodes

Other examples of isolation amplifiers include those using 
transformers and capacitors (signal is usually frequency-modulated)



60

A/D conversion
Conversion of Analog signal to Digital (integer) numbers

Continuous 
(analog) valuesDiscrete (digital) 

numbers

Continuous time → discrete time interval ∆T 

A/D conversion is a process to
• “Sample”a real world signal at finite time intervals
• Represent the sampled signal with finite number of values

∆T
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Sampling rate (frequency)
How fast do we need to sample?  First define the sampling frequency:

T
fsampling ∆

=
1

max2 ffsampling >

(sample/s)

Intuitively, we must sample fast enough to avoid distortion of the signal 
or loss of information ⇒ easier to explain in the frequency domain

where fmax is the highest frequency present in the analog signal

(sampling theorem)

What happens if the above criterion is not met?
- Loss of high frequency information in the signal
- Even worse, the data after sampling may contain false information 
about the original signal ⇒ frequency aliasing 
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Sampling
In the frequency domain, sampling of the signal at fsampling results in 
duplicates of the spectrum that are shifted by m⋅fsampling (m is an 
integer)

spectrum of band-limited signal

The sampling theorem essentially requires the spectrum of signal
not overlapping with its duplicates
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Frequency aliasing
When the sampling theorem condition is not satisfied

Bffsampling 22 max =<

The high-frequency region overlaps and shape of spectrum is changed 
(summed).  The process is not reversible ⇒ information is lost



64

Anti-aliasing
- In the real world, no signal is strictly band-limited.  But an effective 
bandwidth can be defined and used to find the sampling frequency
- To avoid frequency aliasing, a low-pass filter is applied to the signal 
prior to sampling

X(f)

Low pass filter 
cutoff at B

Bf sampling 2>
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Data acquisition hardware
Lots of commercial products to choose from. National Instruments, for 
example, has families of products with a variety of features
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Data acquisition hardware

Input resolution: for 16 bits ⇒ 216 digital levels

If the input range is ±5V , the minimum detectable signal level is 

mV
VV

15.0
65535
10

2
10

16 ==

In practice, it is desirable to match the range of analog signal to the 
input range of the data acquisition hardware to increase the overall 
resolution of amplitude sampling

Examples from National Instruments
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