

Tissue Engineering

11/20/2006

Cellular Therapies

• The use of grafted or transfused primary human cells into a patient to affect a pathological condition

Indicator	Procedure or Patlents per Year			
Skin				
Burns ^b	2,150,000	`		
Pressure sores	150,000			
Venous stasis ulcers	500,000			
Diabetic ulcers	600,000			
Neuromuscular disorders	200,000			
Spinal cord and nerves	40,000			
Bone				
Joint replacement	558,200			
Bone graft	275,000			
Internal fixation	480,000			
Facial reconstruction	30,000			
Cartilage				
Patella resurfacing	216,000			
Chondromalacia patellae	103,400			
Meniscal repair	250,000			
Arthritis (knee)	149,900			
Arthritis (hip)	219,300			
Fingers and small joints	179,000			
Osteochondritis dissecans	14,500			
Tendon repair	33,000			
Ligament repair	90,000			
Blood Vessels				
Heart	754,000			
Large and small vessels	606,000			
Liver				
Metabolic disorders	5,000			
Liver cirrhosis	175,000			
Liver cancer	25,000			
Pancreas (diabetes)	728,000			
Intestine	100,000			
Kidney	600,000			
Bladder	57,200			
Ureter	30,000			
Urethra	51,900			
Hernia	290,000			
Breast	261,000			
Blood Transfusions	18,000,000			
Dental	10,000,000			

TABLE 12.1 Incidence of Organ and Tissue Deficiencies, or the Number of Surgical Procedures Related to These Deficiencies in the United States^a

⁴ From Langer and Vacanti (1993).
^b Approximately 150,000 of these individuals are hospitalized and 10,000 die annually.

poreal support devices, β -islet cells for diabetes, skin for ulcers and burns, and genetically modified myocytes for treatment of muscular dystrophy. The challenges faced with each tissue are different. A few examples are provided for illustrative purposes.

Key Cellular Fate Processes

- Cell differentiation
- Cell division (mitosis)
- Cell migration (motion)
- Cell death (apoptosis)

Cellular Communication

- Soluble signals
- Direct cell-cell contact
- The extracellular matrix (ECM)

Challenges Facing the Tissue Engineer

- The reconstitution of physical (mass transfer) and biological (soluble and insoluble signals) microenvironments for the development of tissue function
- To overcome scale-up problems in order to generate cellular microenvironments that are clinically meaningful
- The system automation to perform on clinically meaningful scales
- The implementation of devices in clinical settings, with cell handling and preservation procedures that are required for cell therapies

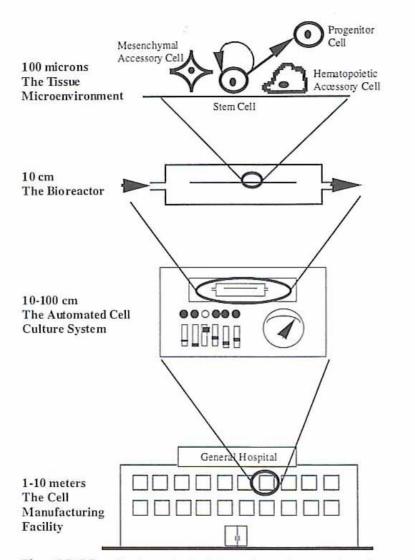


Fig. 12.11 The four principal size scales in tissue engineering and cellular therapies.

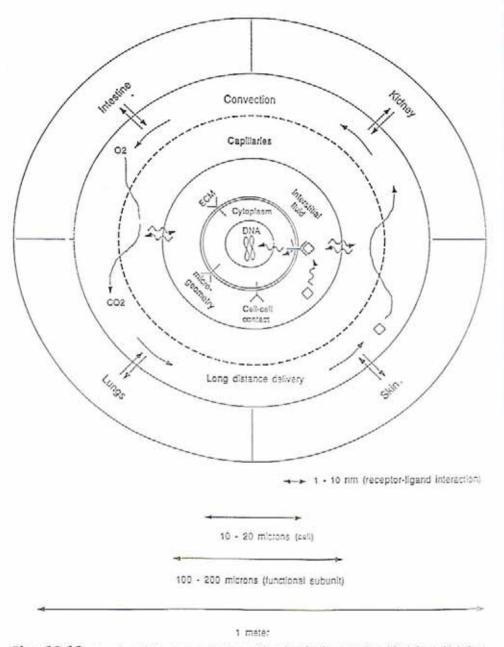
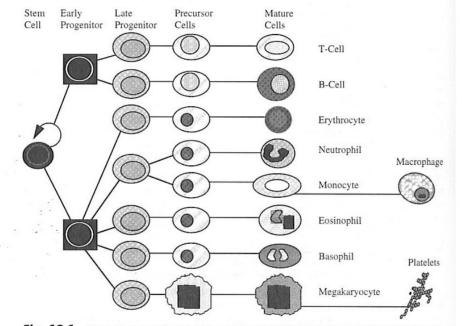
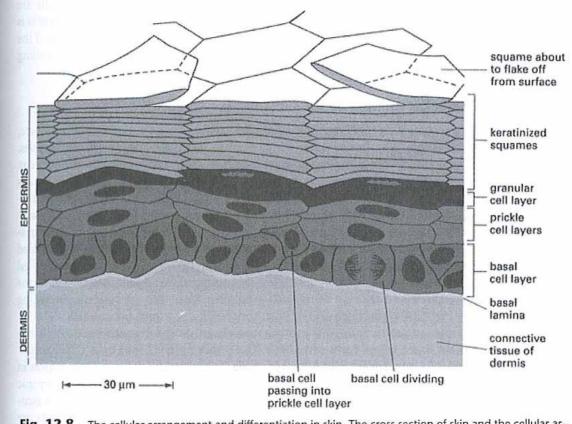



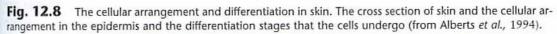
Fig. 12.12 A cell and its communication with other body parts (modified from Lightfoot, 1974).

Human Cells as Therapeutic Agents

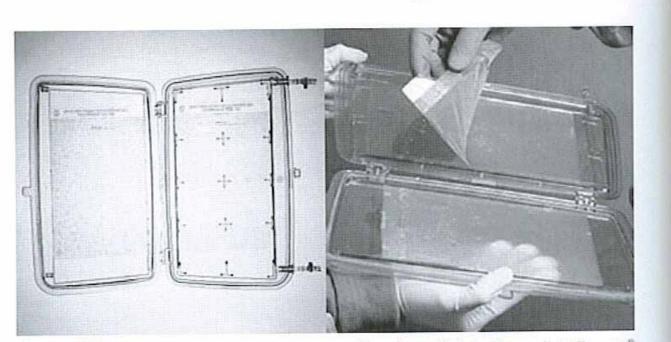
- Bone marrow transplantation
- Skin
- Pancreas/β-islet cells
- Cartilage and chondrocytes

Bone Marrow Transplantation


Fig. 12.1 Hematopoietic cell production. The production fluxes through the lineages can be estimated based on the known steady-state concentration of cells in circulation, the total volume of blood, and the half-lives of the cells. Note that the 400 billion cells produced per day arise from a small number of stem cells (from Koller and Palsson 1993).


Bone marrow is composed of 500-1000 billion cells and produces approx. 400 billion myeloid cells daily

Bone Marrow Transplantation


- Autologous transplants
- Allogeneic transplants

Skin

Cultured Skin

Figure 7.5 Advanced Tissue Sciences bioreactor for culture of their skin product, Trancyte[®], derived from human foreskins.

Pancreas and β-islet Cells

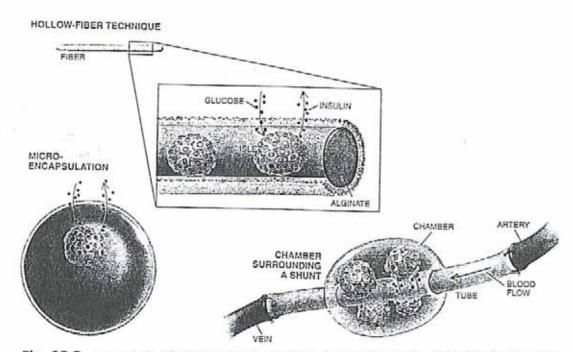
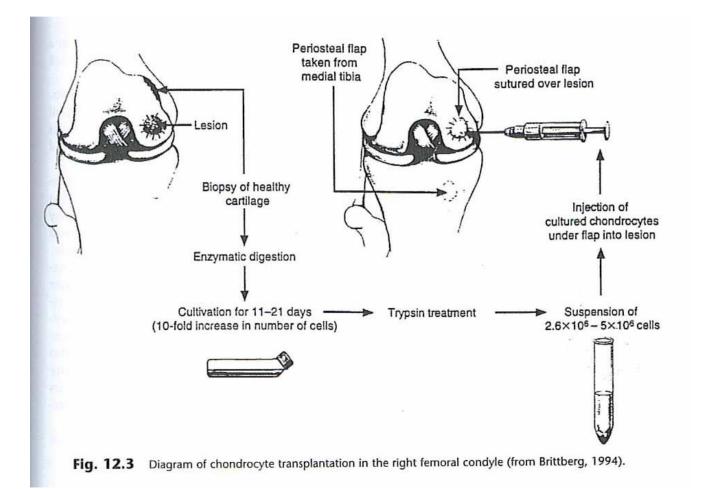



Fig. 12.2 Encapsulation of islets in semiporous plastic is one promising way to protect them from attack by the immune system (from Lacey, 1995).

Cartilage and Chondrocytes

Fundamental Questions Influence Cell Transplantation

- What are clinically meaningful numbers of cells?
 - Require densities higher than 10 million cells per milliliter
- What are the fundamental limitations to the production of primary cells?
 - Primary human cells can undergo about 30-50 doublings in culture
- How rapidly do primary cells grow in culture?
 - Hematopoietic progenitor cells have 11-12 h doubling time
 - Adult chondrocytes have 24-48 h doubling time

- How are these cells currently produced?
 - T cells (in bags)
 - Chondrocytes (tissue culture flasks)

Cell Numbers in Vivo

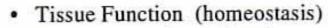
TABLE 12.2 Cell Numbers in Tissue Biology and Tissue Engineering: Orders of Magnitude

Cell numbers in vivo Whole body	1014	
Human organ	109-1011	
Functional subunit	$10^2 - 10^3$	
Cell production in vivo		
Theoretical maximum from a single cell (Hayflick limit)	$2^{30-50} < 10^{15}$	
Myeloid blood cells produced over a lifetime	10 ¹⁶	
Small intestine epithelial cells produced over a lifetime	5×10^{14}	
Cell production ex vivo		
Requirements for a typical cellular therapy	10 ⁷ -10 ⁹	
Expansion potential ^a of human tissues		
Hematopoietic cells		
Mononuclear cells	10-fold	
CD34 enriched	100-fold	
Two or three antigen enrichment	106- to 107-fold	
T cells	10 ³ - to 10 ⁴ -fold	
Chondrocytes	10- to 20-fold	
Muscle, dermal fibroblasts	>10 ⁶ -fold	

" Expansion potential refers to the number of cells that can be generated from a single cell in culture.

Factors to Reconstitute Tissue Function

- The nature of the tissue microenvironment
- The dynamics of the cellular communication and metabolic processes


Considerations for Microenvironments

- The design of cell culture devices must produce uniformity in supporting factors such as nutrient, oxygen, growth factor/hormone concentrations
- The above input applications must be reasonably homogeneous down to 100 um distances

Three Dynamic States of Tissues

- Tissue function: the normal steady-state function of tissue
- Tissue formation: the formation of tissue is the field of developmental biology
- Tissue repair: wounded tissue displays a healing process that may be of concern in cell therapies and tissue engineering

Tissue Dynamics

- Tissue Formation (developmental biology)
- · Tissue Repair (wound healing)

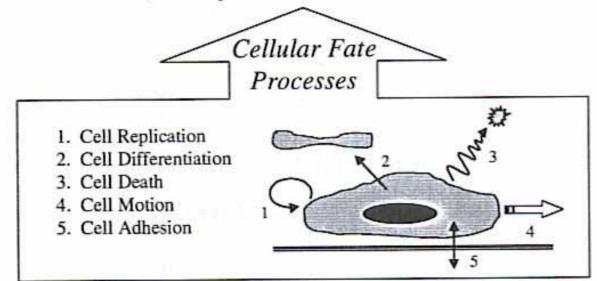
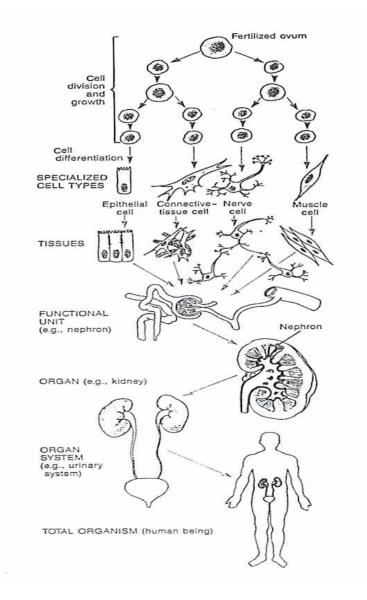



Fig. 12.5 Tissue dynamics. The three dynamic states of tissues and the underlying cellular fate processes.

Tissue Histogenesis

Cellular Fate Processes

- Cell replication an increase in cell number
- Cell differentiation changes in gene expression and the acquisition of a particular function
- Cell Motility the motion of a cell into a particular niche or location
- Cell apoptosis the controlled death of a cell, distinguished from necrotic death
- Cell adhesion the physical binding of a cell to its immediate environment, which may be a neighboring cell, extracellular matrix, or an artificial surface

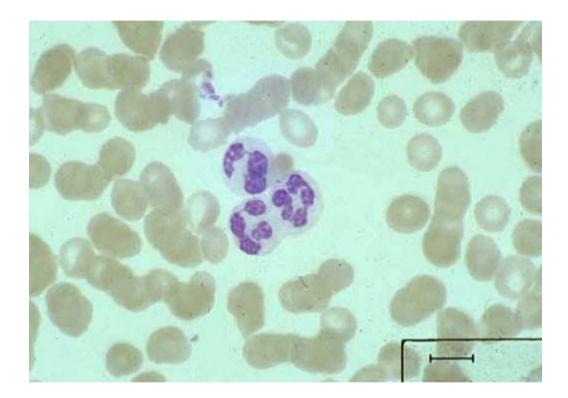
Tissue	Species	Turnover Time (days)
Erythropoiesis	Rat	2.5
Myelopoiesis	Rat	1.4
Hematopoiesis	Human	2.5
Small intestinal epithelium	Human	4-6
	Rat	1-2
Epidermis	Human	7-100
Coreneal epithelium	Human	7
Lymphatic cells	Rat (thymus)	7
	Rat (spleen)	15
Epithelial cells	Rat (vagina)	3.9
	Human (cervix)	5.7
Spermatogonia	Human	74
Renal interstitial cells	Mouse	165
Hepatic cells	Rat	400-500

TABLE 12.3 Cell Renewal Rates in Tissues

15

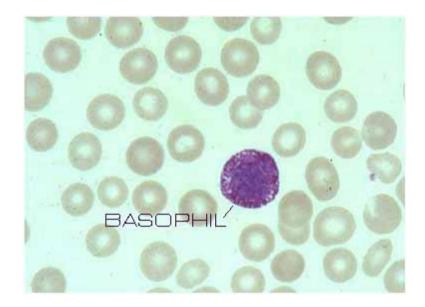
Highly Prolific Tissues

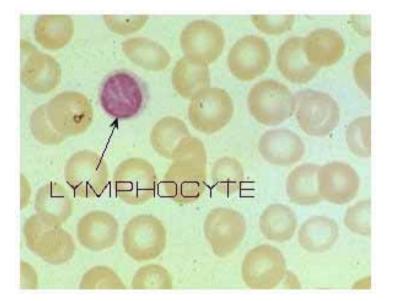
- Bone barrow and blood cell formation
- The villi in the small intestine
- Skin

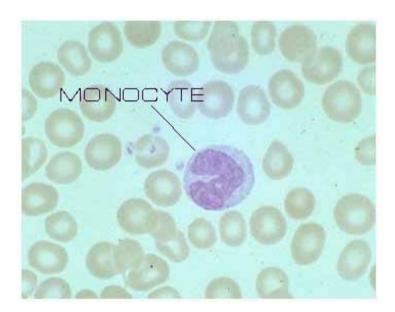

Model for Cell Production in Hematopoiesis

	Stem Cell	Early Progenitor	Late Progenitor	Precursor Cell	Mature Cell
Cell Number	Potential 2 ³⁰ . 2 ⁵⁰ per cell				Need About 10 ¹⁶ total over lifetime
Cell Cycling	Very slow (t _d ~ 1/6wks.)	Slow (t _c -60-100hrs.)	Very rapid (t _d ~ 12 hrs.)	Slow	Zero (can be activated in special cases)
Apoptosis	Inactive	Inactive	Very Active (1:5000 survives)	Slow	Inactive (can be induced)
Motility	Zero (except during homing)	Zero	Low	Higher	Function of Physiological State
Regulation	Cell-Cell Contact	Cell-Cell Contact	Soluble Growth Factors	Soluble Growth Factors	Soluble Growth Factors

Fig. 12.6 Model for cell production in prolific tissues. This model was derived from decades-long research in hematology. The columns represents increasingly differentiated cells, and the rows indicate the cellular fate processes and other events that cells undergo at different states of differentiation (t_d denotes doubling time).


White Blood Cells


- There are five types of white blood cell
 - -neutrophils (中性球) 40 75 %
 - Eosinophils (嗜酸性球) 5 %
 - -basophils (嗜鹼性球) 0.5 %
 - lymphocytes (淋巴球)20 50 %
 - Monocytes (單核球) 1 5 %
- Neutrophils, eosinophils and basophils are collectively known as granulocytes due to prominent granules in their cytoplasm.



Neutrophils

The Villi in the Small Intestine

Fig. 12.7 Villi in the small intestine. (A) Rows of villi of epithelial intestinal cells (the diameter of a villi is about 80 μm). (B) A schematic showing the villi and the crypt indicating the mitotic state of the cells in various locations (from Alberts *et al.*, 1994).

Tissue Formation

Human Development

- Pre-embryonic period (first 2 weeks)
 - includes cleavage, implantation and gastrulation (原腸形成)
- Embryonic period (3rd 8th week)
 includes induction of organ systems
- Fetal period (3rd to 9th month)
 - includes growth and development

Tissue Repair

Wound Healing

• The entire wound healing process is a complex series of events that begins at the moment of injury and can continue for months to years.

Phases of Wound Healing

I. Inflammatory Phase

A) Immediate to 2-5 days

- B) Hemostasis (止血)
 - Vasoconstriction
 - Platelet aggregation
 - Thromboplastin (血栓形成素) makes clot

C) Inflammation

- Vasodilation
- Phagocytosis

II. Proliferative Phase

- A) 2 days to 3 weeks
- B) Granulation (肉芽)

Fibroblasts lay bed of collagen

Fills defect and produces new capillaries

C) Contraction

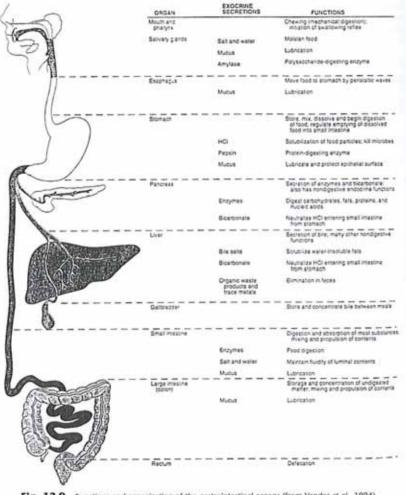
Wound edges pull together to reduce defect

D) Epithelialization (上皮化)

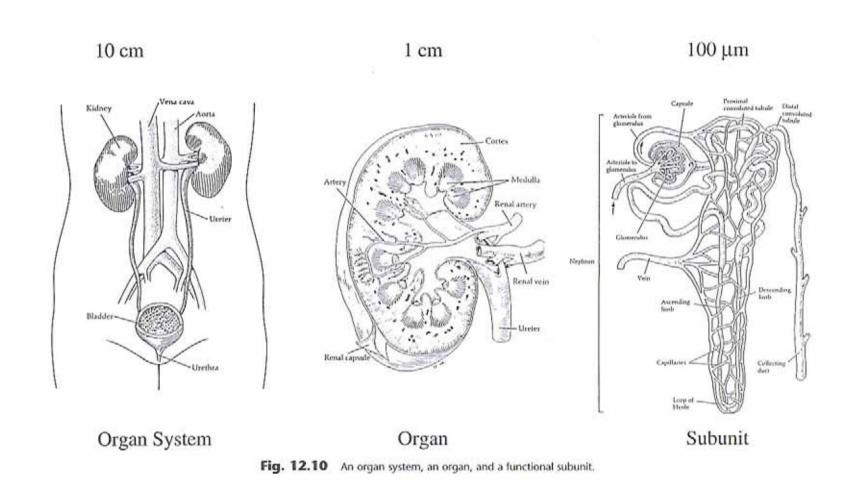
Crosses moist surface

Cell travel about 3 cm from point of origin in all directions

III. Remodeling Phase


- A) 3 weeks to 2 years
- B) New collagen forms which increases tensile strength to wounds
- C) Scar tissue is only 80 percent as strong as original tissue

Organization of Tissues into Functional Subunits


TABLE 12.4 The Major Organ Systems of the Body

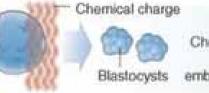
Circulatory	Heart, blood vessels, blood (some classifications also include lymphatic vessels and lymph in this system)	Transport of blood throughout the body's tissues
Respiratory	Nose, pharynx, larynx, trachea, bronchi, lungs	Exchange of carbon dioxide and oxygen; regulation of hydrogen-ion concentration
Digestive	Mouth, pharynx, esophagus, stomach, intestines, salivary glands, pancreas, liver, gallbladder	Digestion and absorption of organic nutrients, salts, and water
Urinary	Kidneys, ureters, bladder, urethra	Regulation of plasma composition through controlled excretion of salts, water, and organic wastes
Musculoskeletal	Cartilage, bone, ligaments, tendons, joints, skeletal muscle	Support, protection, and movement of the body; production of blood cells
Immune	Spleen, thymus, and other lymphoid tissues	Defense against foreign invaders; return of extracellular fluid to blood; formation of white blood cells
Nervous	Brain, spinal cord, peripheral nerves and ganglia, special sense organs	Regulation and coordination of many activities in the body; detection of changes in the internal and external environments; states of consciousness; learning; cognition
Endocrine	All glands secreting hormones: Pancreas, testes, ovaries, hypothalamus, kidneys, pitutitary, thyroid, parathyroid, adrenal, intestinal, thymus, heart, pineal	Regulation and coordination of many activities in the body
Reproductive	Male: Tetses, penis, and associated ducts and glands	Production of sperm; transfer of sperm to female
	Female: Ovaries, uterine tubes, uterus, vagina, mammary glands .	Production of eggs; provision of a nutritive environment for the developing embryo and fetus; nutrition of the infant
Integumentary	Skin	Protection against injury and dehydration; defense against foreign invaders; regulation of temperature

The Gastrointestinal Organs

Stem Cells

Customized embryonic stem cells

South Korean scientists have created the first human embryonic stem cells that are a genetic match to patients with spinal cord injuries and other diseases, a step in research that might one day lead to growing replacement tissue to treat diseases.

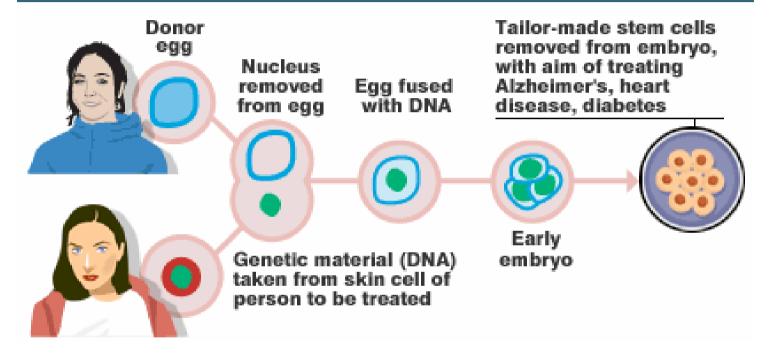

Get a sample

DNA from skin cells was collected from 11 male and female patients ages 2 to 56 with spinal cord injuries, diabetes or a congenital immune disease

Nuclear transfer

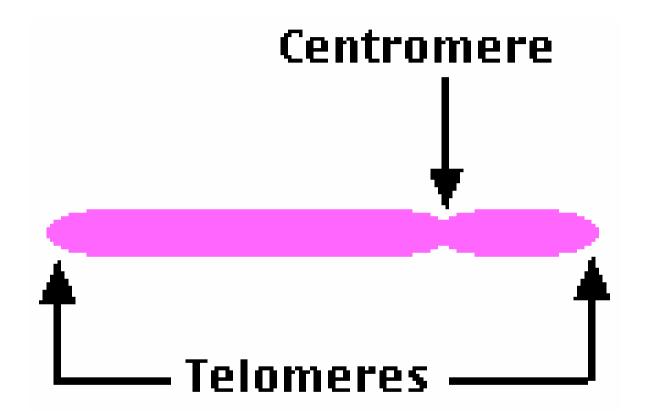
The cells were then inserted into donated eggs whose genes were removed

removed

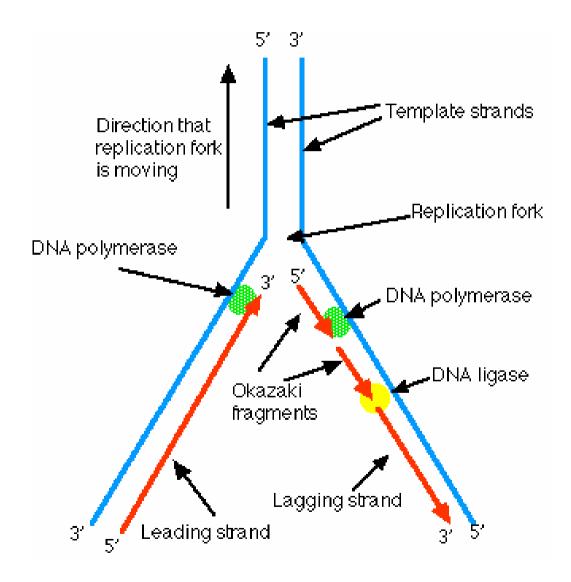

Grow cells

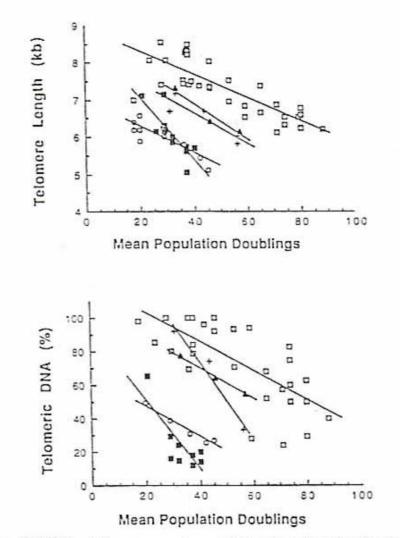
Chemicals jump-started cellular division and 31 early stage embryos, called blastocysts, grew

From the blastocysts, scientists harvested 11 "lines" of stem cells - each a genetic match to the donor of the skin cells


SOURCE: Science

TAILOR-MADE STEM CELLS




Stem Cell Aging

- Telomeres
 - Linear chromosomes have noncoding repeating sequences on their ends
 - Normal human somatic cells lack of telomerase activity and the telomeres are shortened by about 50-200 bp per replication
- Telomerase
 - A ribonucleoprotein DNA polymerase
 - Elongate telomeres in eukaryotes

DNA Replication

Fig. 12.16 Primary experimental data showing the shortening of telomere length with increasing cellular doubling in cell culture (from Harley et al., 1990).

Cell Differentiation

- A process by which a cell undergoes phenotypic changes to an overtly specialized cell type
- A carefully orchestrated switching off and on of gene families

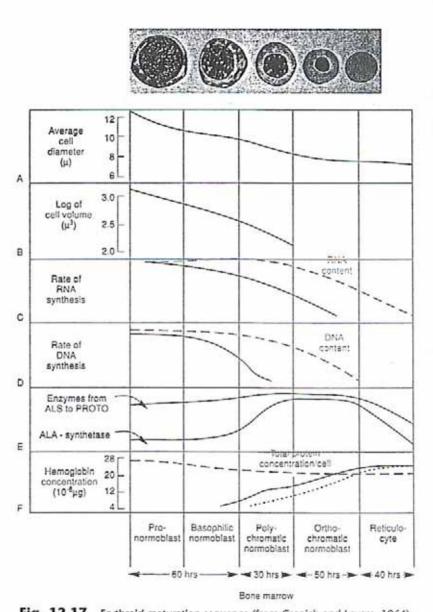
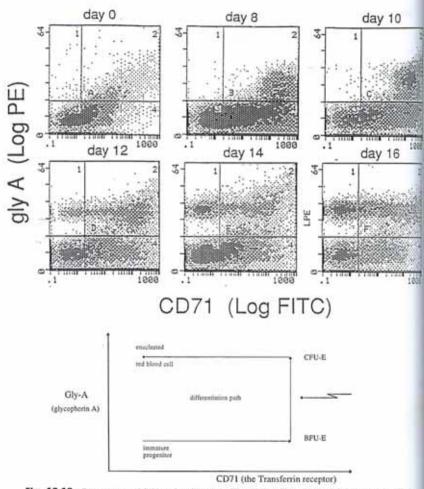
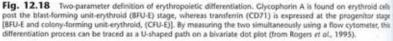
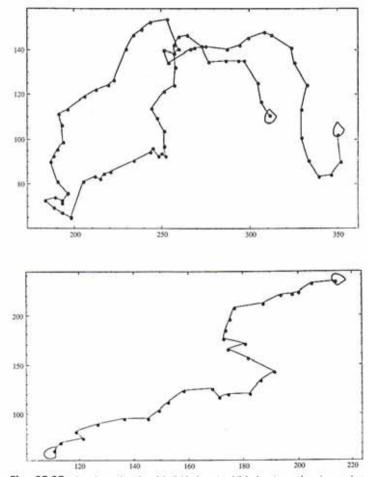
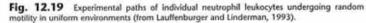




Fig. 12.17 Erythroid maturation sequence (from Granich and Levere, 1964).

Experimental Observation of Differentiation

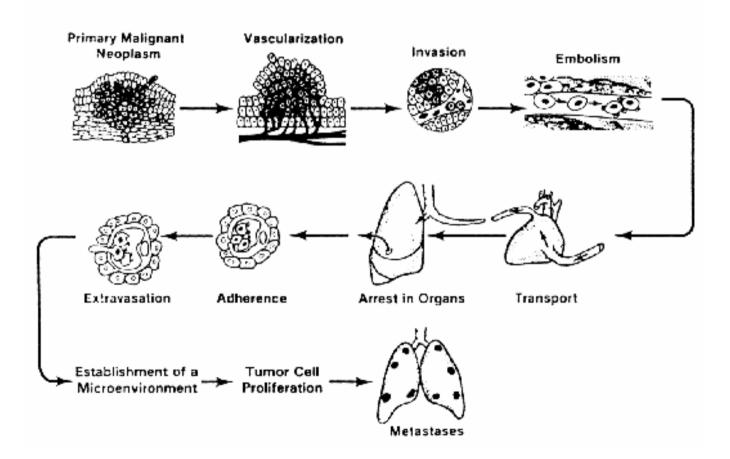

Two Different Approaches of the Kinetics of Cell Differentiation


- Compartmental Models
- Differentiation as a Continuous Process

Cell Migration is Important During

- Organogenesis
- Embryonic development
- Tissue repair
 - wound healing
 - angiogenesis
- Immune system
- Cancer Metastasis

Cell Motion is a Random Walk Process



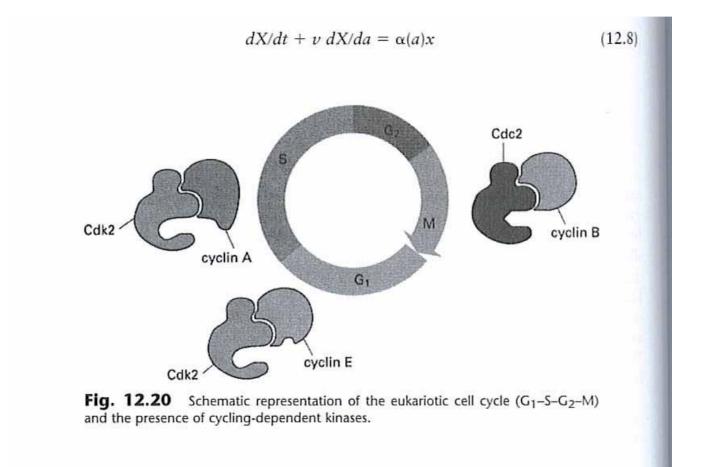

Cell Type	Speed	Persistence Time
Rabbit neutrophils	20 µm/min	4 min
Rat alveolar macrophages	2 µm/min	30 min
Mouse fibroblasts	30 µm/h	1h
Human microvessel endothelial cells	25-30 µm/h	4–5 h

TABLE 12.6 Random Motion — Measured Cell Speeds and Persistence Times

Cancer Metastasis

Cell Cycle

 Changes in cell number of cellular processes are equal to:

Entry by input – differentiation – exit by apoptosis + entry by cell division

How Do Cells Communicate?

- They secrete soluble signals, knowns as cyto- and chemokines
- They touch each other and communicate via cell-cell contact
- They make proteins that alter the chemical microenvironment (extracellular matrix)

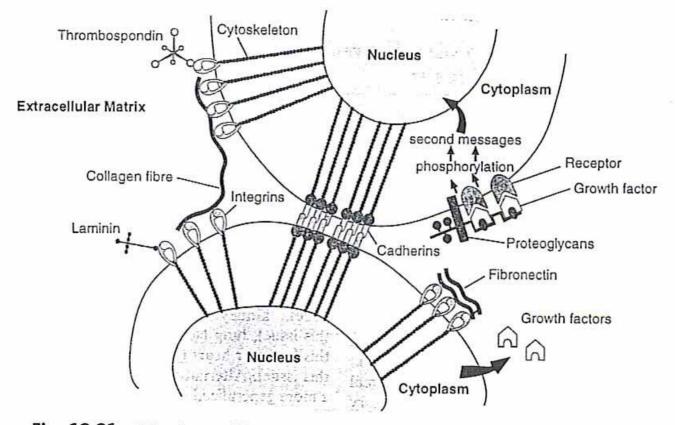


Fig. 12.21 Cell and extracellular matrix (ECM) protein interactions (from Mutsaers et al., 1997).

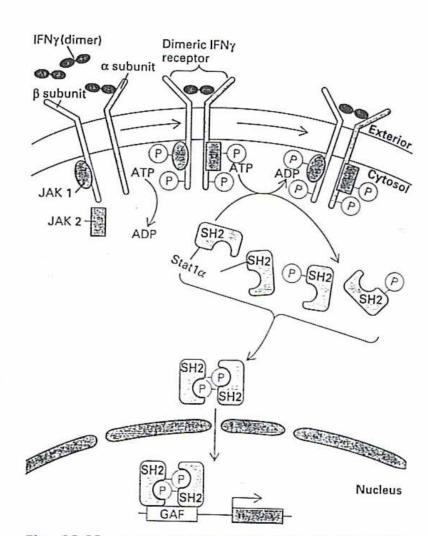


Fig. 12.23 A schematic representation of the interferon gamma signal transduction pathway (from Lodish *et al.*, 1995).

Extracellular Matrix

TABLE 12.7 Components of the Extracellular Matrix*

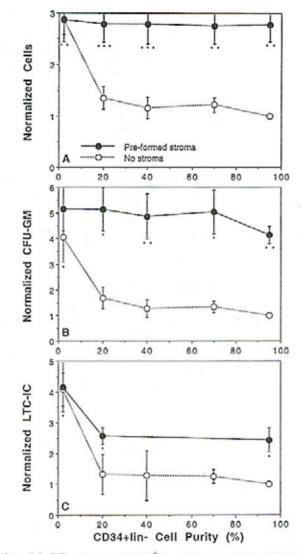
Component	Function	Location
Collagens	Tissue architecture, tensile strength	Ubiquitously distributed
	Cell-matrix interactions	
	Matrix-matrix interactions	
Elastin	Tissue architecture and elasticity	Tissues requiring elasticity, e.g., lung, blood vessels, heart, skin
Proteoglycans	Cell-matrix interactions	Ubiquitously distributed
	Matrix-matrix interactions	
	Cell proliferation	
	Binding and storage of growth factors	
Hyaluronan	Cell-matrix interactions	Ubiquitously distributed
e te subsection	Matrix-matrix interactions	
	Cell proliferation	
	Cell migration	
Laminin	Basement membrane component	Basement membranes
	Cell migration	
Epiligrin	Basement membrane component (epithelium)	Basement membranes
Entactin (nidogen)	Basement membrane component	Basement membranes
Fibronectin	Tissue architecture	Ubiquitously distributed
	Cell-matrix interactions	
	Matrix-matrix interactions	
	Cell proliferation	
	Cell migration	
	Opsonin	
Vitronectin	Cell-matrix interactions	Blood
	Matrix-matrix interactions	Sites of wound formation
	Hemostasis	/452/W467
Fibrinogen	Cell proliferation	Blood
	Cell migration	Sites of wound formation
	Hemostasis	
Fibrillin	Microfibrillar component of elastic fibers	Tissues requiring elasticity, e.g., lung, blood vessels, heart, skin
Tenascin	Modulates cell-matrix interaction	Transiently expressed associated with
	Antiadhesive	remodeling matrix
	Antiproliferative	
SPARC ^e (osteonectin)	Modulates cell-matrix interaction	Transiently expressed associated with
	Antiadhesive	remodeing matrix
	Antiproliferative	
Thrombospodin	Modulates cell-matrix interaction	Platelet α granules
Adhesion molecules	Cell surface proteins mediating cell adhesion to matrix or adjacent cells	Ubiquitously distributed
	Mediators of transmembrane signals	122
von Willebrand factor	Mediates platelet adhesion	Plasma protein
	Carrier for procoagulant factor VIII	Subendothelium

^a Mutsaers, S., Bishop, J., McGrouther, G., and Laurent, G., "Mechanisms of Tissue Repair, from Wound Healing to Fibrosis," Int. J. of Biochem. Cell Biol. Vol. 29 No. 1 (p. 5-17) (1997).
^b SPARC, secreted protein acidic and rich in cysteine.

The Microenvironment is Characterized by

• Neighboring cells

Cell-cell contact, soluble growth factors, etc


• The chemical environment

The extracellular matrix, the dynamics of the nutritional environment

• The local geometry

TABLE 12.9 Cells That Contribute to the Tissue Microenvironment

Stromal cells: derivates of a common precursor cell Messenchyme Fibroblasts Myofibroblasts Osteogenic/chondrogenic cells Adipocytes Stromal-associated cells: histogenically distinct from stromal cells, permanent residents of a tissue Endothelial cells Macrophages Transient cells: cells that migrate into a tissue for host defense either prior to or following an inflammatory stimulus Blymphocytes/plasma cells Cytotoxic T cells and natural killer (NK) cells Granulocytes Parenchymal cells: cells that occupy most of the tissue volume, express functions that are definitive for the tissue, and interact with all other cell types to facilitate the expression of differentiated function

Fig. 12.27 Effect of CD34⁺lin cell (a population of primitive hematopoietic cells) purity on culture output. With increasing purity the performance on a per cell basis drops due to loss of accessory cell function. CFU-GM, colony-forming units granulocyte/macrophage, LTC-IC, long-term culture-initiating cells (from Koller et al., 1995a).

Oxygenation

Human	μmol 0 ₂ /10 ⁶ cells/h	
HeLa	0.1-0.0047	
HLM (liver)	0.37	
LIR (liver)	0.30	
AM-57 (amnion)	0.045-0.13	
Skin fibroblast	0.064	
Detroit 6 (bone marrow)	0.43	
Conjunctiva	0.28	
Leukemia MCN	0.22	
Lymphoblastoid (namalioa)	0.053	
Lung	0.24	
Intestine	0.40	
Diploid embryo WI-38	0.15	
MAF-E	0.38	
FS-4	0.05	

 TABLE 12.11
 Measured Oxygen-Demand Rates of Human Cells in Culture

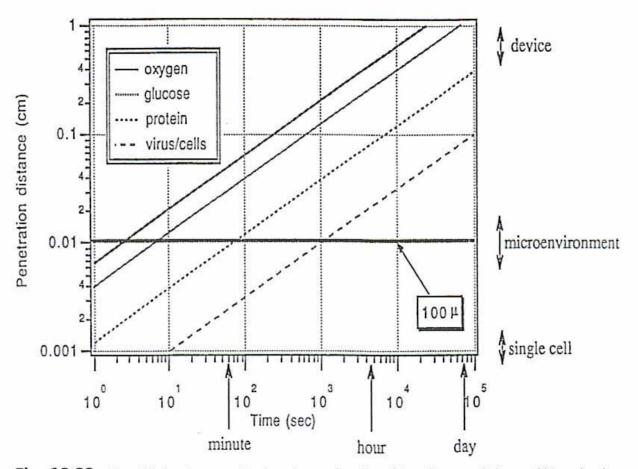


Fig. 12.28 The diffusional penetration lengths as a function of time for several classes of biomolecules.

Key Design Challenges of Scaling Up

- Oxygenation-providing adequate flux of oxygen at physiology concentrations
- Provision and removal of cyto- and chemokines
- Physiological perfusion rates and uniformity in distribution
- Biomaterials-functional, structural, toxicity and manufacturing characteristics

In Situ Respirometer

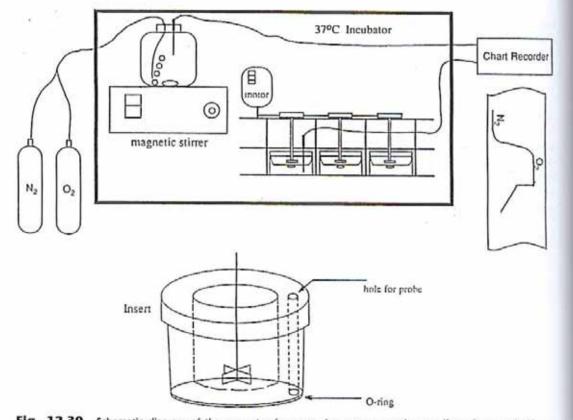
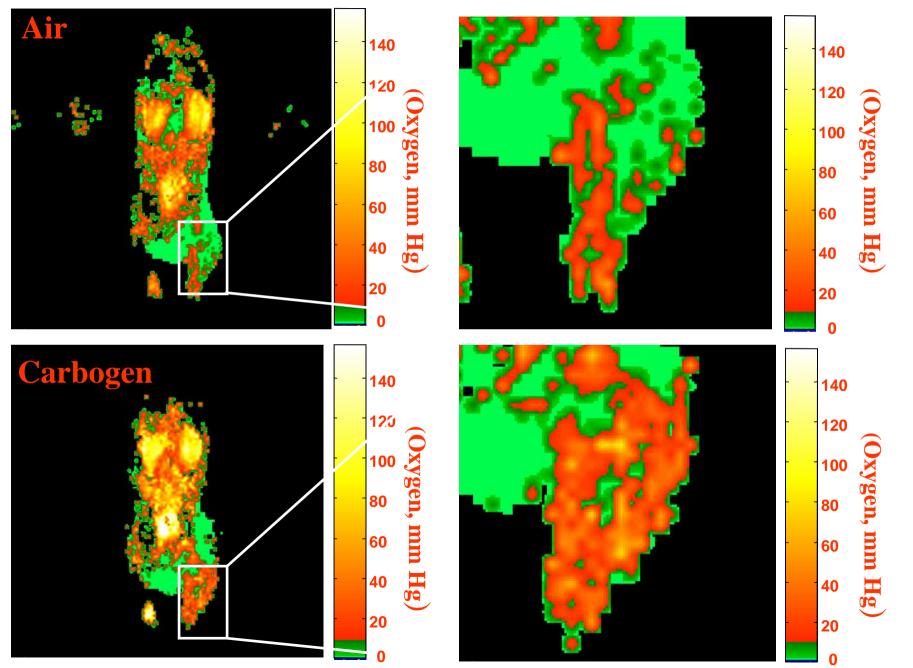
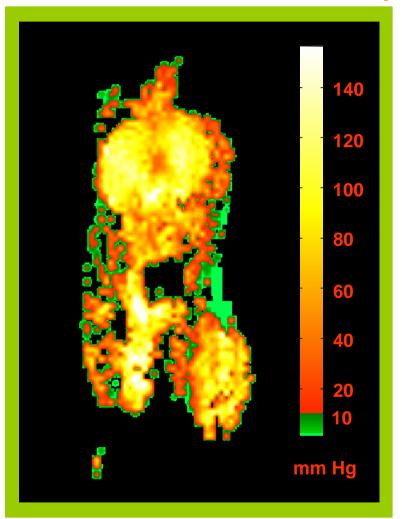


Fig. 12.30 Schematic diagram of the apparatus for measuring oxygen uptake rate (from Peng and Palsson, 1996a).

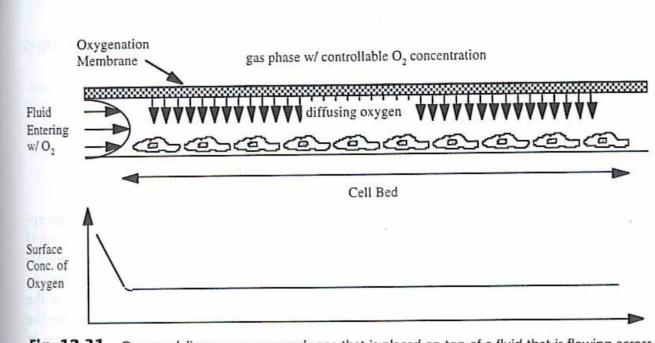
Microelectrode pO₂ Historgraph



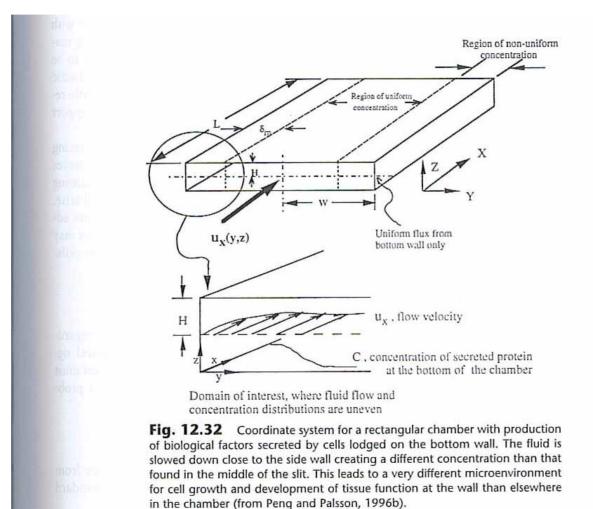
1cm SCC Tumor



OMRI: SCC Tumor


Breathing Carbogen 15 Gy Tumor Irradiation _{pO2} Maps

100 min. After 15 Gy


Before XRT

Fluid Flow

Fig. 12.31 Oxygen delivery across a membrane that is placed on top of a fluid that is flowing across a cell bed. If the fluid transit time is much slower than the diffusional time for oxygen, then oxygen is delivered primarily via diffusion. This leads to a small entrance effect where the oxygen in the incoming stream is consumed while the oxygen concentration over the rest of the cell bed is relatively constant.

Uniformity

Problems of Delivering Cellular Therapies in a Clinical Setting

- Donor-to-donor variability
- Strongly interacting variables
- Immune rejection
- Tissue procurement

Exercises

- Please discuss a new method to measure oxygen tension in tissues other than OMRI or pO2 microelectrode
- Please describe details of DNA replication process
- Please explain why the tissue microenvironment is important for tissue engineering