Optical Imaging Based on Photo-Acoustic Techniques

台大電機系李百祺

There is more than light,...

Opto-acoustic (Photo-acoustic) imaging: Imaging with optically generated ultrasound

Essentials of Imaging

- Contrast mechanism
- Spatial resolution
- Sensitivity
- Wave generation and detection
- Image formation
- Sources of distortion
- Limitations

Motivations for OA Imaging

- Thermoelastic effects.
- Contrast mechanism is based on optical differences. Major chromophores in VIS-NIR are hemoglobin and melanin.
- Acoustic propagation is used for reducing distortion effects.
- Combining advantages of optical and ultrasonic imaging.

Basic Principles of OA Imaging

- Light absorption
- Irradiation and detection.
- Forward and backward modes
- Signal processing for compensating signal distortion.

Applications of OA Imaging

- Breast imaging
 - Deep lying structures
 - Requiring good sensitivity
- Skin profiling
 - Detection and staging of cancer
 - Requiring good resolution
- Functional and molecular imaging
- Many more,...

Time-Resolved Opto-Acoustic Detection

Absorbed Energy Distribution

Laser-Induced Acoustic Waveform: Small Absorbing Sphere

Sensitivity and Resolution

- Opto-acoustic signals are wide-band, ultrasonic transients.
- Sensitivity is spread over the bandwidth.
- Main parameter of transducer in OA imaging: $\Delta S/\Delta f_{ac}$ (bandwidth specific sensitivity).
- Typical transducer materials: PZT, PVDF and Lithium Niobate.

Outline

- Basics in acoustics:
 - Wave propagation
 - Scattering, attenuation and speckle
 - Fundamental limitation in image contrast
- Acoustic generation and detection
- Optical detection of ultrasonic displacement
- Optical generation by laser
- Applications:
 - OA imaging
 - Ultrasonic imaging

Acoustic Wave Propagation

- A medium is required for a sound wave.
- Physical quantities to describe a sound wave: displacement, strain and pressure.
- Longitudinal (compressional) vs. shear (transverse).

• Longitudinal Wave:

• Shear Wave:

• Longitudinal Wave:

• Shear Wave:

Displacement and Strain

- Displacement: movement of a particular point.
- Strain:
 - Displacement variations as a function of position.
 - Fractional change in length.
 - Deformation.
 - Can be extended to volume change.

Displacement and Strain

• Compressional strain:

$$\delta W = \frac{\partial W}{\partial z} L \equiv SL$$
$$S \equiv \frac{\partial W}{\partial z}$$

• Shear strain:

$$S \equiv \frac{\partial V}{\partial Z}$$

Stress (Pressure)

- Force per unit area applied to the object.
- Net force applied to a unit volume:

 $\partial T \mid \partial Z$

Hooke's Law

- T=cS, where c is the elastic constant.
- Tensor representation:

Tensor notation	Reduced notation	
XX	1	
уу	2	
ZZ	3	
yz=zy	4	
zx = xz	5	
xy = yx	6	

Hooke's Law (General Form)

$$\begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix} = \begin{bmatrix} c_{11} c_{12} c_{13} c_{14} c_{15} c_{16} \\ c_{21} c_{22} c_{23} c_{24} c_{25} c_{26} \\ c_{31} c_{32} c_{33} c_{34} c_{35} c_{36} \\ c_{41} c_{42} c_{43} c_{44} c_{45} c_{46} \\ c_{51} c_{52} c_{53} c_{54} c_{55} c_{56} \\ c_{61} c_{62} c_{63} c_{64} c_{65} c_{66} \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \\ S_2 \\ S_2 \\ S_2 \\ S_3 \\ S_4 \\ S_4 \\ S_5 \\ S_6 \end{bmatrix}$$

- Stress tensor symmetry: no rotation.
- Strain tensor symmetry: by definition.

Hooke's Law (Isotropy)

$$\begin{bmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{bmatrix} = \begin{bmatrix} c_{11} c_{12} c_{12} 0 & 0 & 0 \\ c_{12} c_{11} c_{12} 0 & 0 & 0 \\ c_{12} c_{12} c_{11} 0 & 0 & 0 \\ 0 & 0 & 0 & c_{44} 0 & 0 \\ 0 & 0 & 0 & 0 & c_{44} 0 \\ 0 & 0 & 0 & 0 & c_{44} \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \\ S_5 \\ S_6 \end{bmatrix}$$

$$c_{11} = c_{12} + 2c_{44} = \lambda + 2\mu$$

• Lamé constants: and μ (shear modulus).

Common Elastic Constants

• Young's modulus (elastic modulus, E):

$$T_{zz} = (\lambda + 2\mu) S_{zz} + \lambda (S_{xx} + S_{yy})$$

= $\lambda (S_{xx} + S_{yy} + S_{zz}) + 2\mu S_{zz}$
= $\lambda \Delta + 2\mu S_{zz}$ (: dilation)

$$E \equiv \frac{T_{zz}}{S_{zz}} = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}$$

 $E \approx 3\mu$ for liquid and soft tissues

Common Elastic Constants

• Bulk modulus (reciprocal of compressibility, B):

$$B \equiv -\frac{\rho}{\delta V/V} = -\frac{\rho}{\Delta}$$

$$\rho \equiv -\frac{(T_{xx} + T_{yy} + T_{zz})}{3} = -B \cdot \Delta$$

$$B = \frac{3\lambda + 2\mu}{3}$$

Common Elastic Constants

 Poisson ratio (negative of the ratio of the transverse compression to the longitudinal compression,):

$$\sigma \equiv -\frac{S_{_{YY}}}{S_{_{ZZ}}} = \frac{\lambda}{2(\lambda + \mu)}$$

• approaches to 0.5 for liquid and soft tissues.

• Electrical and mechanical analogy:

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = v(t) \quad \longleftrightarrow \quad m\frac{d^2w}{dt^2} + r_m\frac{dw}{dt} + k_mw = f(t)$$

Electrical		Mechanical	
q	charge	W	displacement
i=dq/dt	current	U=dw/dt	particle velocity
V	voltage	f	force (stress, pressure)
L	inductance	т	mass
<i>1/C</i>	1/capacitanc e	k_m	stiffness
R	resistance	r _m	damping

• Newton's second law: $A(p(z,t) - p(z + \delta z, t)) = (\rho \cdot \delta z \cdot A) \frac{\partial^2 w(z,t)}{\partial t^2}$ $\frac{\partial^2 w(z,t)}{\partial t^2} = (B/\rho) \frac{\partial^2 w(z,t)}{\partial z^2} \qquad c = \sqrt{B/\rho}$

 $W(Z,\omega) = W_1(\omega) e^{-j\omega z/c} + W_2(\omega) e^{j\omega z/c}$ $W(Z,t) = W_1(t - Z/C) + W_2(t + Z/C)$

 $U(Z,t) \equiv \partial W(Z,t) / \partial t$ $U(Z,\omega) = j\omega W(Z,\omega)$ $U(Z,\omega) = U_1(\omega) e^{-j\omega z/c} + U_2(\omega) e^{j\omega z/c}$ $p(z,\omega) = -\frac{B}{j\omega} \frac{\partial u(z,\omega)}{\partial z}$ $= Z_0(u_1(\omega) e^{-j\omega z/c} - u_2(\omega) e^{j\omega z/c})$ Characteristic impedance : $Z_0 = \rho c$

Two Common Units

• Pa (Pascal, pressure) :

 $1 Pa = 1 N / m^2 = 1 Kg / (m \cdot sec^2)$

• Rayl (acoustic impedance) :

 $1 Ray I = 1 Pa / (m / sec) = 1 Kg / (m^2 \cdot sec)$

Reflection and Refraction

$$Z(z,\omega) \equiv \frac{\rho(z,\omega)}{u(z,\omega)} = Z_0 \frac{U_1(\omega)e^{-j\omega z/c} - U_2(\omega)e^{j\omega z/c}}{U_1(\omega)e^{-j\omega z/c} + U_2(\omega)e^{j\omega z/c}}$$

Reflection and Transmission

• 1D:

$$R_{c} = \frac{Z_{2} - Z_{1}}{Z_{2} + Z_{1}} (reflection)$$
$$T_{c} = \frac{2Z_{2}}{Z_{2} + Z_{1}} (transmission)$$

Reflection

Hard Boundary

Soft Boundary

Reflection

Low Density to High Density High Density to Low Density

Reflection, Transmission and Refraction

Refraction

Table IV Velocity and acoustic impedance of pertinent materials and biological tissues at room temperature (20-25°C)

	Velocity (m/sec)	Impedance × 10 ⁻ ° (kg/m²-sec)°
Warar	1484	1.48
Aluminum	6420	17.00
Aluminum	343	0.0004
Air	2670	3.20
Plexigias	1550	1.61
Blood	1550	1.62
Myocardium (perpendicular to noers)	1450	1.38
P3(1570	1.65
Liver	1560	1.62
Kidney Skull bone	3360 (longitudinal)	6.00

"Rayl is a unit commonly used for acoustic impedance. One rayl = 1 kg/m²-sec.

TABLE 9.3

REFLECTIVITY OF NORMALLY INCIDENT WAVES

Materials at Interface		Reflectivity
Brain-skull bone		0.66
Fat-bone		0.69
Fat-blood		0.08
Fat-kidney		0.08
Fat-muscle		0.10
Fat-liver		0.09
Lens-aqueous humor		0.10
Lens-vitreous humor		0.09
Muscle-blood		0.03
Muscle-kidney		0.03
Muscle-liver		0.01
Soft tissue (mean value)-water	ť	0.05
Soft tissue-air)	0.9995
Soft tissue-PZT5 crystal	× 1	0.89

Scattering, Attenuation and Speckle

Scattering

Histology

Reflection vs. Scattering

Scattering

- (Specular) Relfection vs. (Rayleigh) Scattering.
- Angular scattering vs. Back-scattering.

Scatter Parameters

- Scatter cross section (σ_s):
 Total scattered power/Incident energy.
- Backscatter cross section (σ_b).
- Backscatter coefficient (ε):
 - $-\sigma_b$ per unit volume of scatterers.
 - $-\varepsilon$ normalized to solid angle (*sr*⁻¹).

Scattering Properties

• Rayleigh scattering (ignoring secondary scattering):

 $\sigma_s \propto k^4 a^6$

- Determing factors:
 - Size and structure.
 - Cell, blood vessel and ductal network.
- Roughly Speaking:
 - Blood: f^4 .
 - Myocardium: f^3 .
 - Other soft tissue: $f^{1.5-2.5}$.

Scattering Properties

Frequency (MHz)	ε(mm ⁻¹) heart tissue	ε(mm ⁻¹) blood
2.5	4.3×10-5	0.5×10-6
3.75	1.5×10-4	2.6×10-6
5.0	5.0×10-4	8.2×10 ⁻⁶

Figure 75 Backscattering coefficient of bovine tissues as a function of frequency.

Figure 77 Integrated backscatter defined as the averaged backscatter coefficient over a frequency band relative to that from a flat reflector of canine myocardium measured *in vivo* as a function of cardiac cycle. (From Miller *et al.*, 1985).

- Sources of energy loss:
 - Reflection and scattering.
 - Relaxation.
- Relaxation:
 - Pressure change and volume change are not in phase.
 - Product of absorption and wavelength are roughly constant.
- Fundamental limitations of penetration:
 - Attenuation.
 - Safety requirements.

 $A \cdot I(z + \Delta z) = A \cdot I(z) - 2\beta A \cdot I(z) \Delta z$ $-\frac{\partial I(z)}{\partial z} = 2 \cdot \beta I(z)$ $I(z) = I_0 e^{-2\beta z}$ $\beta = \alpha f$

$$H(Z,f) = e^{-(\alpha f Z + \beta 2\pi f Z/c)}$$

$$I(z, f) = I_0 |H(z, f)|^2 = I_0 e^{-2\alpha fz}$$

$$-10 \log_{10} \left(\frac{I(z, f)}{I_0} \right) = 20 (\log_{10} e) \alpha fz = 8.69 \alpha fz$$

 $\alpha_{dB} = 8.69 \overline{\alpha_{nepers}}$.

• Assuming a Gaussian signal:

 $\begin{aligned} \left|S_{t}(f)\right|^{2} &= e^{-(\frac{f-f_{0}}{\sigma})^{2}} \\ \left|S_{r}(R,f)\right|^{2} &= \left|S_{t}(f)\right|^{2} e^{-4\alpha Rf} = e^{-(\frac{f-f_{0}}{\sigma})^{2}-4\alpha Rf} \\ \left|S_{r}(R,f)\right|^{2} &= e^{-(\frac{f-f_{1}}{\sigma})^{2}} e^{-4\alpha R(f_{0}-\sigma^{2}\alpha R)} \\ f_{1} &= f_{0} - 2\sigma^{2}\alpha R. \end{aligned}$

Attenuation on Pulse Shape

- Center frequency downshift → Lateral resolution decreases with depth.
- The downshift is proportional to:
 - Bandwidth².
 - Attenuation coefficient.
- Absolute bandwidth is un-changed → Axial resolution is un-affected.
- Tradeoff between lateral and axial resolution.

Table V Attenuation coefficients of biological tissues and pertinent materials

Material	Attenuation coefficient (np/cm at 1 MHz at 20°C)
Air	1.38
Aluminum	0.0021
Plexigias	0.23
Water	0.00025
Fat	0.06
Blood	0.02
Myocardium (perpendicular to fiber)	0.35
Liver	0.11
Kidney	0.09
Skull bone	1.30

Speckle Formation

• Speckle results from coherent interference of un-resolvable objects.

Speckle Formation

- In diagnostic ultrasound, the size of tissue micro-structures is often much smaller than a typical wavelength.
- Pulse-echo ultrasonic images are formed using the phase information.
- Speckle appears as brightness variations and obscure the underlying information.

Speckle Noise

Speckle Noise

- Coherent sum of random signals from sound scatterers in a resolution cell.
- Brightness variations are independent of tissue properties.
- Multiplicative noise.
- Fundamental limitation of contrast resolution.

Speckle First-Order Statistics

Re
$$\{A\} = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} |a_k| \cos \theta_k$$

Im $\{A\} = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} |a_k| \sin \theta_k$
 $p_{\text{Re}\{A\}.\text{Im}\{A\}} = \frac{1}{2\pi\sigma^2} e^{-\frac{\text{Re}\{A\}^2 + \text{Im}\{A\}^2}{2\sigma^2}}$
 $\sigma^2 = \frac{1}{N} \sum_{k=1}^{N} \frac{|a_k|^2}{2}$

Speckle First-Order Statistics

$$p_{I} = \frac{1}{2\sigma^{2}} e^{-\frac{I}{2\sigma^{2}}}$$

$$p_{E} = \frac{E}{\sigma^{2}} e^{-\frac{E^{2}}{2\sigma^{2}}}$$

$$SNR_{I} \equiv \frac{\langle I \rangle}{\sigma_{I}} = 1$$

$$SNR_{E} \equiv \frac{\langle I \rangle}{\sigma_{E}} = \frac{(\pi\sigma^{2}/2)^{1/2}}{((4-\pi)\sigma^{2}/2)^{1/2}} \approx 1.9$$

Speckle First-Order Statistics

• On a log display:

$$D(dB) = f(I) \equiv 10 \log_{10}(\frac{I}{I_0})$$
$$D = f(\langle I \rangle) + (I - \langle I \rangle)f'(\langle I \rangle) + R$$
$$\sigma_D^2 \approx f'(\langle I \rangle)^2 \sigma_I^2 = \left(\frac{10}{\ln 10}\right)^2 \frac{\sigma_I^2}{\langle I \rangle^2}$$
$$\sigma_D \approx 4.34(dB) \quad \leftarrow \text{Fundamental Limitat}$$

lon of

Contrast Resolution

Speckle Noise

Optoacoustic Imaging: Theory and Principles [15]

Optoacoustic Pressure Production

$$p_{\mathbf{r}}(t) \approx \frac{\beta I_0 v_s}{4\pi C} \tau \frac{d}{dt} \oint_{|\mathbf{r}-\mathbf{r}'|=v_s t} A(\mathbf{r'}) \frac{d\mathbf{r'}}{v_s t},$$

- A laser pulse that is short enough such that thermal diffusion can be ignored.
- A(r') is the fractional energy-absorption per-unitvolume of soft tissue at position r'.
- Integral of pressure waves over the surface of a sphere.
Example: Uniformly Absorbing Sphere

• 5 mm radius.

Image Reconstruction

- Objective: reconstruct $A(\mathbf{r'})$ (contrast mechanism).
- Re-formulate as a Radon transform:

$$F_{\mathbf{r}}(t) \equiv \frac{4\pi C}{\beta I_0 \tau} t \int_0^t p_{\mathbf{r}}(t') dt' \approx \oint_{|\mathbf{r}-\mathbf{r}|/v_s=t} A(\mathbf{r}') d\mathbf{r}'$$

Projection

• Reconstruction \rightarrow 3D inverse Radon transform.

3D Inverse Radon Transform

- Taking second spatial derivative of the projection (i.e., the first temporal derivative of the pressure).
- Back-projection.
- Integration over all projection directions.

Issues in Reconstruction

- If the distance is sufficiently larger than the object size, the spherical wave can be approximated as a planar wave.
- Due to the transducer's frequency response, filtered-backprojection is required.

$$p'_{\mathbf{r}}(t) = p_{\mathbf{r}}(t) * i_{\mathbf{r}}(t)$$

Imaging Setup

A Simulation Example

Images of a Human Breast

Cancerous Mass (before)

Cancerous Mass (after)

Other Imaging Geometries

Depth Profiling of Absorbing Soft Materials Using Photoacoustic Methods [24]

OAT Depicts Tissue Layered Structure

Direct visualization of layered tissue structure $\Delta Z \approx \Delta t Cs = 8 \text{ ns} \cdot 1.5 \,\mu\text{m/ns} = 12 \,\mu\text{m}$

Confocal Opto-Acoustic Transducer

Confocal Opto-Acoustic Transducer

Bandwidth 1+100 MHz
Resolution: 15 μm / 80 μm
Sensitivity: 2 μV/Pa
Depth of imaging: 2 mm

Laser pulse energy used: 10-100 µJ Wavelength: 760 nm - 355 nm Pulse duration: 10 ns *In vivo* Opto-Acoustic Imaging of Oral Cancer in Syrian Golden Hamsters

Optoacoustic image and histology of normal pouch

Optoacoustic image and H&E histology of very early cancer

Optoacoustic image and H&E histology of carcinoma *in situ*.

Optoacoustic image and histology of advanced stage of cancer

Sensitivity of Laser Opto-Acoustic Imaging in Detection of Small Deeply Embedded Tumors [4]

Motivation

- Develop an imaging technique for low contrast, small tumors.
- Optical contrast mechanism (between normal tissue and tumor):
 - Absorption: blood content, porphyrins.
 - Scattering: micro-structures.

 1 - Nd: YAG Laser
2 - Optical Fiber
3 - Arc Array of
32 transducers
4 - Amplifier and Multiplexor
5 - Computer Transducer Array: Sensitivity: Resolution: Data acquisition : Data processing and image formation: Image processing: Total time:

32 of 1mm 10 *µ*V/Pa 0.4 mm x 1 mm 16 sec 4 sec 15 sec 35 sec

Sensitivity of Tumor Detection

Maximum Depth of Tumor Detection

Signal Processing Diagram

N - Shaped Optoacoustic Signals from Small Spheres

Optoacoustic Imaging Equation

Image Reconstruction Algorithm

Radial Backprojection

$$\xi(\vec{r}) = \sum_{n=1}^{N} u_n (\left| \vec{r} - \vec{r}_n \right| / c_s) \left| \vec{r} - \vec{r}_n \right|$$

Image Processing

Filtration of the entire image matrix, $\xi_2(\vec{r})$

$$\xi_2(\vec{r}) = \frac{1}{4\pi^2} \int F_{\xi}(\vec{\omega}) H(\vec{\omega}) e^{i\vec{\omega}\vec{r}} d\vec{\omega}$$

$$F_{\xi}(\vec{\omega}) = \int \xi(\vec{r}) e^{-i\omega \vec{r}} d\vec{r} - Spatial \ FFT \ Spectrum$$
$$H(\vec{\omega}) = |\vec{\omega}| e^{-(|\vec{\omega}|/\sigma)^2} - Filter \ Transfer \ Function$$

Gelatin Phantom

Pulsed Laser Radiation 34 mm 28 mm # #2 $\mu_{a} = 1 \text{ cm}^{-1}$ Gel Phantom $\mu_{\rm eff} = 1.2 \, {\rm cm}^{-1}$ **Transducer Array**

 2 spheres were embedded in phantom of 120-mm diameter.

 Light absorption coefficient of spheres : μ_a=1.0 cm⁻¹.

 Light attenuation coefficient of phantom: μ_{eff}=1.2 cm⁻¹.

OA Image of Two Spheres in Gel Phantom

Is Functional Opto-acoustic Imaging Possible?

Structural and Functional Mouse Brain OA Imaging [18]

Mouse Brain Structural Image

Mouse Brain Functional Image

Blood Oxygenation Detection

Dual Wavelength Technique

Blood Oxygenation Detection

Opto-acoustic Molecular Imaging

Gold Nanoparticles

Gold Nanoparticles

References

References

- 1. A. A. Karabutov and V. E. Gusev, Laser optoacoustics (American Institute of Physics, New York, 1993).
- 2. A. A. Karabutov, E. V. Savateeva, N. B. Podymova, and A. A. Oraevsky, "Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer," J. Appl. Phys. vol. 87, no. 4, pp.2003–2014 (2000).
- 3. A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, "Time-resolved laser optoacoustic tomography of inhomogeneous media," Appl. Phys. vol.63, pp.545–563 (1996).
- 4. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, "Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors," IEEE J. Sel. Top. Quantum Electron. vol. 5, pp.981–988 (1999).
- 5. J. A. Viator, L. O. Svaasand, G. Aguilar, B. Choi, and J. S. Nelson, "Photoacoustic measurement of epidermal melanin," in Biomedical optoacoustics IV, A. A. Oraevsky, ed. Proc. SPIE 4960, pp.14–20 (2003).
- 6. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, "Threedimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. vol. 23, no. 8, pp.648–650 (1998).

- R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, "Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study," Appl. Opt. vol. 41, no.22, pp.4722–4731 (2002).
- 8. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress," Appl. Opt. vol. 36, no. 1 pp.403-415 (1997).
- 9. Y. Xu, D. Feng, and L. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry," IEEE trans. Medical imaging, vol. 21, no. 7, pp.823-828 (2002).
- 10. Y. Xu, D. Feng, and L. V. Wang, "Exact frequency-domain reconstruction for thermoacoustic tomography-II: cylindrical geometry," IEEE trans. Medical imaging, vol. 21, no. 7, pp.829-833 (2002).
- 11. R. A. Kruger, W. L. Kiser Jr, D. R. Reinecke, G. A. Kruger, and K. D. Miller," Thermoacoustic optical molecular imaging of small animals," Molecular Imaging vol. 2, no. 2, pp.113-123 (2003).
- 12. R. A. Kruger, W. L. Kiser Jr, D. R. Reinecke, and G. A. Kruger, "Thermoacoustic computed tomography using a conventional linear transducer array," Medical Physics vol. 30, no. 5, pp.856-860 (2003).

- 13. R. A. Kruger, K. M. Stantz, and W. L. Kiser Jr, "Thermoacoustic CT of the Breast," Proc. SPIE vol. 4682, pp.521-525 (2002).
- 14. R. A. Kruger and W. L. Kiser Jr, "Thermoacoustic CT of the Breast: Pilot Study Observations," Proc. SPIE vol. 4256, pp.1-5 (2001).
- 15. R. A. Kruger, W. L. Kiser Jr, K. D. Miller, and H. E. Reynolds, "Thermoacoustic CT: imaging principles," Proc SPIE vol. 3916, pp.150-159 (2000).
- 16. R. A. Kruger, "Photoacoustic ultrasound," Med. Phys. vol. 21, no. 1, pp.127-131 (1994)..
- 17. R. A. Kruger, R. Liu, Y. Fang, and C. R. Appledom, "Photoacoustic ultrasound (PAUS)-reconstruction tomography," Med. Phy. vol. 22, no. 10, pp. 1605-1609 (1995).
- 18. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotech. vol. 21, no. 7, pp.803-806 (2003).

- 19. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Threedimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Optics Lett. vol. 28, no. 19, pp.1739-1741 (2003).
- 20. M. Xu, Y. Xu, and L. V. Wang, "Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Tran. Biomedical engineering. vol. 50, no. 9, pp. 1086-1099 (2003).
- 21. M. Xu and L. V. Wang, "Time-domain reconstruction for thermoacoustic tomography in a spherical geometry," IEEE Tran. Medical Imaging, vol. 21, no. 7, pp. 814-822 (2002).
- 22. Xu and L.V. Wang, "Effects of acoustic heterogeneity in breast thermoacoustic tomography," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 50 no. 9, pp. 1134-1146 (2003).
- 23. A. A. Oraevsky, A. N. Oraevsky, "Plasmon resonance in ellipsoid nanoparticles," Quant. Electron. vol. 32, no. 1, pp.79-82 (2002).

- 24. J. A. Viator, S. L. Jacques and S. A. Prahl, "Depth profiling of absorbing soft materials using photoacoustic methods", IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 4, pp 989-996 (1999).
- 25. J. D. Hamilton, T. Buma, M. Spisar, M. O'Donnell, "High frequency optoacoustic arrays using etalon detection," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, no. 1, pp160-168 (2000).
- 26. J. D. Hamilton, C. J. Brooks, G. L. Vossler, M. O'Donnell, "High frequency ultrasound imaging using a active optical detector," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, no. 3, pp719-727 (1998).