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Present Programs Overview

1. Advanced Beamforming Technology

2. Ultrasonic Small Animal Imaging

3. Ultrasound Assisted Liposomal Therapy
4. Opto-Acoustic Imaging

5. Others




Advanced Beamforming Technology
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Ultrasonic Synthetic Aperturel maging
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M.-L. Li and P.-C. Li, "Filter Based Synthetic Transmit and Receive Focusing",
Ultrasonic Imaging, Vol. 23, pp. 73-89, April, 2001.



Adaptive | maging

— A generalized-coherence-factor (GCF) weighting technique

) prOposed. GCF - spectral energy within &pre - specified low frequency range
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P.-C. Liand M.-L. Li, " ", IEEE Transactions
on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 50, No.2, pp. 128-141, February, 2003.


http://land.ee.ntu.edu.tw/classnotes/paper/Adaptive imaging using the generalized coherence factor.pdf

2-D Flow Estimation Using Channel Data

Channel

Lateral motion causes different
tilt slopes in acquired channel
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Ultrasonic Small Animal Imaging



High Frequency Ultrasonic
Imaging System
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Fully digital system architecture
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High Frequency Ultrasonic System: Rat
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High Frequency Ultrasonic System: Zebra-Fish

Zebra-Fish (3-5cm)
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Ultrasound Assisted Liposomal Therapy



« Ultrasound contrast agents (UCASs) are shell-
encapsulated microbubbles

« UCAS are used to enhance backscattered echoes
from blood (15-20 dB)

contrast agents Contrast Agents (micorn) Liposomes (nano)

Liposome

Not a drug vehicle Mainly hydrophilic drug vehicle
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Ultrasound on Gene Therapy

e Using Ultrasound, microbubbles, liposome and plasmid
DNA to achieve gene transfer and gene expression

e Advantages:
— Non-invasive
— Target gene therapy
e Present works : Bubble
— Mechanism research
(Cavitation, etc.) Interior the cell Plasmid
— Tumor inhibition
and therapy

Exteriar the cell

Cell membrane
Nucleus



Opto-Acoustic Imaging



Opto-Acoustic Measurement of Blood Flow
and Contrast Agent Fabrication

»Functional imaging. Ex : blood oxygen
measurement.

*Develop O.A. contrast agent to enhance the
O.A. signal.

Liposome with dye
(Direct-81 red)

Current work:

1.Liposome (with dye Direct-81 red) as O.A.
contrast gent

2.Gold nanopatrticles as P.A. contrast agent

Gold nanoparticles



Improved Backward Opto-Acoustic Imaging
Using Synthetic Aperture Focusing and

Coherence Factor

eOA imaging was based on the different optical ‘
absorption coefficients in tissue.

eOA imaging has poor lateral resolution and SNR
due to the wide optical and acoustic radiation Heat
patterns. generation

eBackward OA 2-D imaging system has been
built up.

eBoth the lateral resolution and SNR were
improved by using SAFT and CF weighting
method. Xy X
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Cont’d
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( bottom left), the image after SAFT and CF
weighting



A Numerical Approach for
Opto-Acoustic Ultrasound

» Governing Equations
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Others Studies



Pspice Modeling of Ultrasound Transducer

Bul = ! 5w F
= Model of an ultrasound single element transducer. o "u._;f " ol i E|
fi %. T - | £
.. . : o A '

=L ow acoustic impedance, low acoustic quality factor [y ey
. . . . . : LR |
and low dielectric constant of piezoelectric polymeris = S

suitable to fabricate ultrasound transducer.
Fig. 1. Equivalent circuit for the thickness mode transducer

» Acoustic and electrical part of transducer can easily
be varied and analyzed by using Pspice simulation.

=In future, transducer model can expand to a v1(_) (TR
complete ultrasound system S

Fig. 2. Pspice subcircuit for thickness mode transducer



Computed Tomography Sound
Velocity Reconstruction

We proposed a method for incorporating the segmentation information of a B-
mode image into the process of sound velocity reconstruction with limited-
angle transmission tomography.

The reconstructed sound vel ocities are accurate except at the boundaries.

The sound velocity error are generaly 1-3 m/s.

Obtaining the sound velocity distribution is feasible with current B-mode
Imaging setup using linear arrays.

Image Object Segmented Regions Sound Velocity Distributiog8

giltered Compounded Image Extracted Boundaries Sound Velocity Error
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Combining High Frequency Ultrasound and Micro-PET
System for Small Animal Imaging Study

O small animal model and tumor monitoring

O using high frequency ultrasound system to
measure tumor growth curve and angiogenesis

O micro-PET study :

1. principle of tumor [18F]FDG PET detecting =
2. principle of PET imaging |
3. micro-PET imaging and
O radiopharmacokinetic
study registration imaging fusion and to integrate
the two imaging systems




Liver Fibrosis Grade Classification Using B-mode Ultrasound

« Experiment set-up - NSw [ ERREa
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Liver in water tank e Healthy liver ...‘..
* Image feature extracted by gray level

concurrence and non-separable
wavelet transform

— GLC (the energy of concurrence
matrix of healthy liver is more
concentrated then cirrhotic liver)
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— The accuracy of different classes
done by support vector machine




Previous Studies Overview

1. Adaptive Imaging

2. Ultrasonic Nonlinear Imaging

3. Ultrasonic Elastic Imaging

4. 3-D Ultrasonic Imaging

5. High Frequency Ultrasonic Imaging

6. Blood Flow Estimation Using Ultrasonic Contrast Agent



1. Adaptive Imaging



Adaptive Imaging

A new adaptive imaging technique using
generalized coherence factor (GCF) Is
proposed.

GCF is derived based on the spectrum of
the received array data along the array
direction.

GCF Is an index of beamforming quality

GCF Is used as a weighting factor to the
reconstructed image.
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Generaized Coherence Factor

GCF =

spectral energy within@a pre- specified low frequency range

Uil
(AN

T T~

W 10 dB/div

High GCF corresponds to good focusing
guality and the image intensity should be

.Nll )< maintai ned
o e No aberration
r L\ 10 dB/div L ower GCF should be used to reduce the

Image data because significant beamforming
errors are present

Aberrated



Aberrated

GCF Corrected




2. Ultrasonic Nonlinear Imaging



Ultrasonic Tissue Har monic | maging

e Tissue Harmonic

— the harmonic component generated from finite amplitude distortion
Pressura

N Before distortion

V2R

» — — - After distortion

 Pulselnversion
— Better fundamental rejection, lower frame rate
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Ultrasonic Tissue Har monic | maging

- The Effect of Multi-focus Technique on Tissue Harmonic Image
- Effects of Harmonic Leakage on Tissue Harmonic Imaging

Secondary
focus

Multi-focus technique

Primary

focus
harmonic beam pattern
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Ultrasonic Tissue Har monic | maging

« Harmonic gpatial covariance analysis
o Effectsof SNR
» Effects of sound velocity inhomogeneities
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Ultrasonic Tissue Har monic | maging

Intensity

 Motion artifacts of Pulse Inversion Technique

o Effectsof SNR
» Effects of sound velocity inhomogeneities
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3. Ultrasonic Elastic Imaging



Ultrasonic elastic Imaging

 Ultrasonic strain compounding image based on
afast speckle tracking algorithm

 Strain compounding technique
— Improve contrast resolution of the image
— Steps:
Obtain an uncompressed image as a basis
Applying an external force on the object yields deformation

Modify the deformation in the image plane
Average the modified and original images



2D fast speckle tracking algorithm

 Block Sum Pyramid ﬁ\
— Takethreshold: SADmIn
N\

— Reduce the computations of SAD i <

%block:Y om

Pyramid structure om

X™(,j)=X™(2i-1,2j-1)+ X™(2i -1,2]) X

+X™2i,2)-1)+ X ™(2i,2]) / \/\ /‘ZompareSADm
. block: X \Am

SAD m(X,Y):ZZ\x”‘(i,j)—Ym(i,j)\ om

—>

o Multilevel Block matching
— Reduce numbers of points to be searched W
— Weuse 2 levels l
— 1% level: window size= w*w, 9 points
— 2 ]evel: window size= ¥2*w* Y2 *w, all points

1st level



Results

Algorithm performance For 121 pixels

L anguage FSA BSPA BSPA & Ratio
Multilevel
Matlab 27.14 (s) | 14.17 () 764(s) | 36:2:1
C 12.3(9) 1.53 (9) 0998(s) [12:15:1

Compounding image

Width>mm)

L: original image

Width>(mm)
R: compounding image with BSP & Multilevel

BSP & Multilevel
algorithm isindeed
not only faster than
traditional algorithm,
but also as accurate
as traditional one.

Liver
SNR=0.1164
sNR !

Computing
speed 4



Cont’d
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SNR=0.9625
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Computing speed +
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Young’'s M odulus M easurements of Human Liver
and Correlation with Pathological Findings

The Experi mental Set—up The Readings from Electrical Balance as a Function of Time

The Stress- Strain Curve




The Young's modulus of normal liver, cirrhotic liver and
hepatic tumors
Preload Young’s Modulus (Pascals)
strain Liver parenchyma {mean value) Hepatic tumors
Nomal  |Ciurhosis  |Cirhosis Hepatocellular |Cholangio-|Focal Hemangioma

(Fibrosis  |(Fibrosis |carcinoma carcinoma |nodular  |{Emelianov
score:4)  |scare: 5) hyperplasia |et al. 1998)

5% 642.6 1106.4 1649.0  |Smaller than |3003.7 10349 Larger than

1%  |108.6 |2373.6 |49307 [ommalliver fjoaegq [25725  [nomnalliver




Tissue characterization of
Ultrasonic B-image

e Compare normal with cirrhotic liver

— Statistical method

— Conventional and non-separable wavel et
decomposition method

Normal liver Cirrhotic liver



4. 3-D Ultrasound Imaging



A Free-Hand 3D Ultrasound Imaging System

- Frame Grabber
r‘

ATLUM-2  Phantom
Correlation-Based
Analysis for

Y Cnmpleﬁantinn

Frame division
L




Correlation-Based Analysis for Complex Motion

Acquire 2 imagg
11 Speckle tracking
FIndx" Z'anda
I Correct the x’ and z’ motions
|mages are spatial matched
Il

Eal culate 2D C.C]

Go through dl 3 vy ,
combinations

Find the best matched combination




A 3D System Integration

o Platform
- Win NT OpenGL
A

Frame Grabber

==

X 3D Rendering
Baby Phantom ATL UM-9




5. High Frequency Ultrasonic Imaging



High frequency ultrasonic
Imaging sysl;em

*Fully digital system architecture - DxGCruls
*50 MHz center frequency
*60 % fractional bandwidth

Intensity (dB)

i . \ | | 3 . \
10 20 30 40 50 60 70 80 90 100
frequency(MHz)

Dynamic focus Tissue attenuation Hardware Design



depth(mm)

Diameter = 52um GlEED

Wire phantom

52um nylon wire phantom
Gaussian Pulse Gaussian Chirp Pulse
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Resolution test

o|_ateral projection:

«Spatial resolution is about 60 u
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IN-vitro pig eye image
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Tissue harmonic imaging

e Pulseinversion technigque cancels fundamental signal
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High Frequency Ultrasound Doppler

 50MHz High Frequency Ultrasound : wideband transmitted
signal (short transmitted pulse) and narrow lateral
beamwidth — better spatial and velocity resolution (down
to mm/s), capable of estimating low velocities blood flow
In small vessals.

Power Amp. T-Port
200MHz 7
—»| DAC
PC
<¢——| ADC

flow C—————>C

(@)




High Frequency Ultrasound Doppler

In-Vitro Flow Estimation : Autocorrelation Technique
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High Frequency Ultrasound Doppler

In-Vitro Flow Estimation : WMLE Technique

ry' (H)

ry (1)

I(v)

(P-K)* T* (1+2v/c)

S
r, (t) Delay Line of Length
q /

o w1

Bank of delay lines, and filter h(t) matched to the expected

demodulated echo signals which correspond to various
velocities. The maximum likelihood velocity is then given by

the filter with the largest output.
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High Freguency Ultrasound Doppler

In-Vitro 2D Flow Data: 500um diameter cyst,
with maximum velocity 20mm/s




High Frequency Ultrasound Experiment

25~50MHz
Basic System Diagram Flow System
200MHz DA wq
i< )
500MHz AD 4

Experiment Condition

200MHz DA excite 25~50 MHz coded ultrasound wave
500MHz AD receiving

Wide band ultrasound transducer

Up to 20KHz PRF



High Frequency Flow Estimation
RF Butterfly Search (Multi-line)

Traditional Butterfly Search Line Experimental -Flow Result

20

15| o |
J/\ / ‘/\‘J\
al kv /W/ W‘*\\ 1

mm/secs | |

Multiple Butterfly Search Lines oA LT Y

5 ”
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Multi-line Butterfly —_—



High Freqguency Flow Estimation
Color Flow Image

mm/sec




High Freguency Harmonic Image
25MHz 300 £/m Cyst image

Fundamental Image

Fundamental Image

Harmonic Image —_—
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0 20 40 60 80 100

Frequency (MHZz)



6. Blood Flow Estimation Using
Ultrasonic Contrast Agent



Doppler Blood Flow Estimation

(1

- Doppler Angle Estimation
- Blood Flow Estimation
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1. P.-C. Li, C.-J. Cheng and C.-C. Shen, “Doppler Angle Estimation Using Correlation”, IEEE
Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 47, No. 1, pp. 188-196, 2000.

2. P.-C. Li, C.-J. Cheng and C.-K Yeh, "On the Velocity Estimation Using Speckle Decorrelation”, IEEE
Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 48, No. 4, pp. 1084-1091, July,

2001.

3. C.-K. Yeh and P.-C. Li, "Doppler Angle Estimation Using AR Modeling",

Ultrasonics, Ferroelectrics and Frequency Control. June, 2002

IEEE Transactions on



Blood Flow Estimation Using Ultrasonic Contrast Agent

- Blood Flow Estimation (Indicator-Dilution Theory)
- Time-Vary Method

(42
_ Damperﬁl]4 | T
7-MHz Linear Arr PU P
Transducer é mp Reservoir '%
' [=
Mixing Chamber [ . -
: ringe
<« | <+ g
> — | — Time
! Eﬂ Flow Meter 1 sec 300 sec
Time-Intensity Curve (TIC)
Reservoir

1. C.-K. Yeh S.-W. Wang and P.-C. Li, Feasibility Study on the Time-Intensity Based Blood
Flow Measurements Using Deconvolution,” Ultrasonic Imaging, vol. 23, pp. 90-105, April,
2001,

2. P.-C. Li, C.-K. Yeh and S.-W. Wang, "Time-Intensity Based Volumetric Flow
Measurements: An In Vitro Study", Ultrasound in Medicine and Biology. vol. 28, no. 3, pp.
349-358, 2002



Doppler Blood Flow Estimation in Pulsatile Flow (II)

- Doppler Angle Estimation
- Blood Flow Estimation

; .
Data Acquisition System Z
- --TTTTTTTT T T T T mEm A -
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Blood Flow Estimation Using Ultrasonic Contrast Agent

- Shadowing Effect
- Input and Output Time-Intensity Curves (IOTIC)

&b R,
< | = e
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Chih-Kuang Yeh and P. C. Li, “Contrast specific ultrasonic flow measurements based
on both input and output time intensities,” Ultrasound in Medical & Biology, 2002



A ssessment of Parameters in Pulsatile Flow
using Ultrasound Contrast Agent

* Provide amodel for the assessment of perfusion
characteristics

 Dilution theory

— MTT : mean transient time
— theory : V/Q (ideal)
e LTI system ™= TV (time-varying)

baseline=0




Experimental setup

Transducer




Simulation methods
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EQUIPMENT (1)

Panametrics Model 5900 PR (pulser / receiver)

GW Model GFG-813 (function generator)

GW Model GFG-8016D (function generator)

HP Model 54603B (oscilloscope)

Tektronix Model TDS 380 (oscilloscope)

TAIK Model TK-12001D (DC power supply)

EPE Model EP-3000 (DC power supply)
Cimarec Model SP46925 (stirrer/heater)
OHAUS Model IP12KS

Microtime Model 51/52-E (WINICE)
Cole Parmer Model 07596-20 (damper)
Cole Parmer Model 77021-60 (pumper)

GaGe Model CompuGen 1100 (AFG)

GaGe Model CompuScpoe 12100 (A/D)

Amplifier Research LN1000A(LNA)
Amplifier Research P25A250A(PA)

Signatec DAC200

Signatec PDA500
Signatec PMP8-A

Panametrics HF cable

[ S S

N

200 MHz digital

60 MHz  probe X 4
power line X 1

Two channel / digital
real-time / 400MHz /
2GS/s

S/N:1069980822742

S/N:A001955172

ISA interface 1M
RAM on board S/N:
G00086 80 MHz

PCl interface 1M
RAM on board S/N:
P10243 100 MHz

DC transformer

User manual ,
CDX1,BNC to SMD
cableX3

User manual , CDX1
User manual , CDX1

1 ft., 3 ft., 6ft.



EQUIPMENT (2): Transducer




EQUIPMENT (3): Commercial Ultrasound Machine

(SonoSite)

(hand-carried ultrasound system) (GE LOGIQS00)



EQUIPMENT (4): Phantom

Breast (I) Breast (Il) Baby



EQUIPMENT (5)

(Digital Sonifier, BRANSON) (UHDC Flow System)
Making Microbubbles Simulation Physical Pulsatile Flow



EQUIPMENT (6)

Degas Equipment
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