

How Brain-Computer Interfaces Work

Target Cursor BCI The computer monitor displays the interpreted thought activity

The patient mentally visualizes the cursor reaching the target

©2007 HowStuffWorks

The brain activity is interpreted by computer software

Brain Computer Interface

invasive

electrodes to a rat's brain-two to the areas that receive signals from its whiskers and a third to a "pleasure

"It's not just a mobile robot platform," says Talwar, "but a biological sensor where you can read the rat's directly from neural signals. The rats may be used for search-and-rescue operations or to find land mines.

invasive

disadvantages

non-invasive

Non Invasive - EEG

• 原理:偵測頭皮上大腦發出的電訊號

• 優點:

High in time resolution,可至幾個Ms之內

缺點:

Low in spatial resolution

易受到肌電訊號影響

Non Invasive - fNIRS

• 原理:利用紅外線偵測大腦血液的流動

優點:
High in spatial resolution
不易受到肌電訊號影響
容易裝置

• 缺點: Low in time resolution

Passive BCI

偵測大腦的勞累程度給予不同程度的反應

Example of Passive BCI

Example of BCI

Specific Design

Error rate

Response time

False acceptance rate