## Biochip / Malaria detection





















# What do we care most?







## Malaria

#### Malaria-infected cells stiffen, block blood flow







#### That's right: 300 million new cases per year making it the most prevalent serious infectious disease!

HIV/AIDS, Tuberculosis and Malaria: The basic facts, 2002 (World Health Organization)

| <u>Disease</u> | Deaths per<br>year | New cases<br>per year | Percentage<br>in<br>developing<br>countries |
|----------------|--------------------|-----------------------|---------------------------------------------|
| HIV/AIDS       | 3 million          | 5.3 million           | 92%                                         |
| Tuberculosis   | 1.9 million        | 8.8 million           | 84%                                         |
| Malaria        | 1 million          | 300 million           | 99.9%                                       |
| L              |                    |                       |                                             |



Leading causes of death in Sub-Saharan Africa, South Asia, and Southeast Asia for persons age 0-44 (World Health Organization)



#### Factors we concern

- Cost (productivity)
- Sensitivity (parasites/mL)
- Usability
- Accuracy
- Species of malaria
- Detection speed





### From microscopy to PCR

- 1. polymerase chain reaction
- 2. amplify DNA pieces
- 3. Denaturation, Annealing, Extension





#### **Different Physical**



**Biophysical Characteristics** 

**Dielectric Characteristics** 

#### **DEP eletrododes**





Integrated Fluidic Chip





#### New solution



- How about CMOS image sensor?
  - Use CMOS sensor to implement Golden standard method
  - Optofluidic microscope



#### **New solution**



#### New solution

- Cost (productivity)
- Usability
- Sensitivity (parasites/ $\mu$ L)
- Accuracy
- Species of malaria
- Detection speed









## Microfluidics

#### Mechanism

![](_page_21_Picture_1.jpeg)

#### 4000 0012 3456 7899 4000 VALID FROMP 00/00 EXPIRES 00/00 V CARDHOLDER NAME

![](_page_21_Picture_3.jpeg)

#### Mechanism

![](_page_22_Picture_1.jpeg)

![](_page_22_Figure_2.jpeg)

#### **Former solution**

![](_page_23_Picture_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

- PCR as a Confirmatory Technique for Laboratory Diagnosis of Malaria
- Microfluidic approaches to malaria detection
- High-speed microfluidic differential manometer for cellular-scale hydrodynamics
- Microfluidics for cell-based assay

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

- Removal of malaria-infected red blood cells using magnetic cell separators: A computational study
- Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for malaria diagnosis
- Sample pretreatment and nucleic acid-based detection for fast diagnosis utilizing microfluidic systems
- Malaria: integrated approaches for prevention and treatment

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

- Optofluidics for biophotonic applications
- Optical imaging techniques for point-of-care diagnostics
- Removal of malaria-infected red blood cells using magnetic cell separators: A computational study
- Rapid Diagnosis of Malaria
- Comparison of five methods of malaria detection in the outpatient setting
- Toward fast malaria detection by secondary speckle sensing microscopy